IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1210-1216.html
   My bibliography  Save this article

Evaluation and assessment of gravity load on mirror shape and focusing quality of parabolic trough solar mirrors using finite-element analysis

Author

Listed:
  • Meiser, S.
  • Schneider, S.
  • Lüpfert, E.
  • Schiricke, B.
  • Pitz-Paal, R.

Abstract

In order to achieve high optical efficiency of solar parabolic trough collectors and high performance of the solar field, the concentrator mirrors in concentrating solar power plants are expected to maintain accurate parabolic shape over the daily operation cycles. In addition to shape imperfections introduced by the manufacturing process, deformation due to gravity load and mounting forces is an inevitable factor affecting shape accuracy in all types of parabolic trough collectors.

Suggested Citation

  • Meiser, S. & Schneider, S. & Lüpfert, E. & Schiricke, B. & Pitz-Paal, R., 2017. "Evaluation and assessment of gravity load on mirror shape and focusing quality of parabolic trough solar mirrors using finite-element analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1210-1216.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1210-1216
    DOI: 10.1016/j.apenergy.2016.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jifeng & Tong, Kai & Luo, Geng & Li, Lei, 2017. "Influence of non-ideal optical factors in actual engineering on the safety and stability of a parabolic trough collector," Renewable Energy, Elsevier, vol. 113(C), pages 1293-1301.
    2. Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
    3. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    4. Thalange, Vinayak C. & Dalvi, Vishwanath H. & Mahajani, Sanjay M. & Panse, Sudhir V. & Joshi, Jyeshtharaj B. & Patil, Raosaheb N., 2017. "Design, optimization and optical performance study of tripod heliostat for solar power tower plant," Energy, Elsevier, vol. 135(C), pages 610-624.
    5. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Malan, Anish & Kumar, K. Ravi, 2022. "Investigation on wind-structure interaction of large aperture parabolic trough solar collector," Renewable Energy, Elsevier, vol. 193(C), pages 309-333.
    7. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Optical performance evaluation of a large solar dish/Stirling power generation system under self-weight load based on optical-mechanical integration method," Energy, Elsevier, vol. 264(C).
    8. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    9. Jian, Yan & Peng, You Duo & Liu, Yong Xiang, 2022. "An optical-mechanical integrated modeling method of solar dish concentrator system for optical performance analysis under service load," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1210-1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.