IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp904-915.html
   My bibliography  Save this article

Risk-constrained day-ahead scheduling for gravity energy storage system and wind turbine based on IGDT

Author

Listed:
  • Wu, Xiong
  • Li, Nailiang
  • He, Mingkang
  • Wang, Xiuli
  • Ma, Song
  • Cao, Jingjing

Abstract

To cope with the risk from the uncertain power output of wind turbines (WTs), energy storage system (ESS) is employed to coordinate with WTs as a combined agent to participate in power market. Due to the limitation of conventional ESSs, gravity energy storage (GES) is invented and developed recently. This paper establishes a day-ahead scheduling model for an economic and environment-friendly GES and WTs. The studied GES is charged when bricks are lifted up by cranes and discharged when bricks fall down to drive generators. Information-gap decision theory (IGDT) is employed to attain the profit against uncertainties from market price and wind power, and a risk-constrained IGDT-based day-ahead scheduling model of the GES and WT is proposed. According to the risk preference of the decision maker, a robustness model for the risk-averse strategy and an opportunity model for the risk-seek strategy are proposed to obtain the minimum and windfall profits, respectively. Finally, the effectiveness of the IGDT-based model is verified by numerical simulations. Simulation results indicate that the expectation of decision makers with a risk-averse or risk-seek strategy could be satisfied by the proposed model. Additionally, the market price has a vital impact on achieving a windfall profit.

Suggested Citation

  • Wu, Xiong & Li, Nailiang & He, Mingkang & Wang, Xiuli & Ma, Song & Cao, Jingjing, 2022. "Risk-constrained day-ahead scheduling for gravity energy storage system and wind turbine based on IGDT," Renewable Energy, Elsevier, vol. 185(C), pages 904-915.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:904-915
    DOI: 10.1016/j.renene.2021.12.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121018383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    4. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    2. Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Cottes & Matia Mainardis & Daniele Goi & Patrizia Simeoni, 2020. "Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach," Energies, MDPI, vol. 13(18), pages 1-15, September.
    2. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).
    3. Julian David Hunt & Behnam Zakeri & Jakub Jurasz & Wenxuan Tong & Paweł B. Dąbek & Roberto Brandão & Epari Ritesh Patro & Bojan Đurin & Walter Leal Filho & Yoshihide Wada & Bas van Ruijven & Keywan Ri, 2023. "Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    7. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    8. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    9. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    10. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    12. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    13. Yuan, Peng & Pu, Yuran & Liu, Chang, 2021. "Improving electricity supply reliability in China: Cost and incentive regulation," Energy, Elsevier, vol. 237(C).
    14. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    15. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    16. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    17. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    18. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    19. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:904-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.