IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp472-479.html
   My bibliography  Save this article

Long-term experiment on p-type crystalline PV module with potential induced degradation: Impact on power performance and evaluation of recovery mode

Author

Listed:
  • Bouaichi, Abdellatif
  • Merrouni, Ahmed Alami
  • El Amrani, Aumeur
  • Jaeckel, Bengt
  • Hajjaj, Charaf
  • Naimi, Zakaria
  • Messaoudi, Choukri

Abstract

The potential induced degradation (PID) phenomenon of p-type c-Si photovoltaic technology is a severe degradation mode that caught the attention of researchers since it can significantly affect the energy production of the PV plants. Various modeling/lab-tests have been conducted but very few are the in-situ experiments estimating the behavior of PID under real operating conditions on desert climate. In this context, the present work inspects the PID presence in an operational PV plant of a p-type monocrystalline silicon (mono-Si) technology with a capacity of 22,2-kW, installed in a Bsh (Hot semi-arid) climate. Besides, the assessment of the PID's impact on the affected modules have been measured and evaluated using several inspection techniques; electroluminescence (EL), thermography (IR) and I–V curve. Furthermore, we have evaluated the PID recovery process in the affected PV modules, and its first appearance in non-affected modules using a polarity inversion technique. The key finding shows that PID can be considered a significant degradation mode affecting the durability and the power output of crystalline silicon modules. Furthermore, the bias polarity change (to only demonstrate that the PID can be regenerated) can recover the PID causing power losses after a very short period. The results of this study demonstrate that PID can rapidly occur within three months in a semi-arid climate of Morocco.

Suggested Citation

  • Bouaichi, Abdellatif & Merrouni, Ahmed Alami & El Amrani, Aumeur & Jaeckel, Bengt & Hajjaj, Charaf & Naimi, Zakaria & Messaoudi, Choukri, 2022. "Long-term experiment on p-type crystalline PV module with potential induced degradation: Impact on power performance and evaluation of recovery mode," Renewable Energy, Elsevier, vol. 183(C), pages 472-479.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:472-479
    DOI: 10.1016/j.renene.2021.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    2. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    3. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pramod Rajput & Maria Malvoni & Nallapaneni Manoj Kumar & O. S. Sastry & Arunkumar Jayakumar, 2020. "Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    2. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    3. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    4. Abdulwahab A. Q. Hasan & Ammar Ahmed Alkahtani & Seyed Ahmad Shahahmadi & Mohammad Nur E. Alam & Mohammad Aminul Islam & Nowshad Amin, 2021. "Delamination-and Electromigration-Related Failures in Solar Panels—A Review," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    5. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    6. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    7. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    8. Singh, Shravan Kumar & Chander, Nikhil, 2022. "Mid-life degradation evaluation of polycrystalline Si solar photovoltaic modules in a 100 kWp grid-tied system in east-central India," Renewable Energy, Elsevier, vol. 199(C), pages 351-367.
    9. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    10. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    11. Xu, Mei & Xie, Pu & Xie, Bai-Chen, 2020. "Study of China's optimal solar photovoltaic power development path to 2050," Resources Policy, Elsevier, vol. 65(C).
    12. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.
    13. Islam, M.A. & Hasanuzzaman, M. & Rahim, Nasrudin Abd, 2018. "A comparative investigation on in-situ and laboratory standard test of the potential induced degradation of crystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 127(C), pages 102-113.
    14. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    15. Ben Seddik, Z. & Ben Taher, M.A. & Laknizi, A. & Ahachad, M. & Bahraoui, F. & Mahdaoui, M., 2022. "Hybridization of Taguchi method and genetic algorithm to optimize a PVT in different Moroccan climatic zones," Energy, Elsevier, vol. 250(C).
    16. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    17. Isabel Santiago & David Trillo Montero & Juan J. Luna Rodríguez & Isabel M. Moreno Garcia & Emilio J. Palacios Garcia, 2017. "Graphical Diagnosis of Performances in Photovoltaic Systems: A Case Study in Southern Spain," Energies, MDPI, vol. 10(12), pages 1-26, November.
    18. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Hassan Daher, Daha & Gaillard, Léon & Ménézo, Christophe, 2022. "Experimental assessment of long-term performance degradation for a PV power plant operating in a desert maritime climate," Renewable Energy, Elsevier, vol. 187(C), pages 44-55.
    20. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:472-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.