IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp797-816.html
   My bibliography  Save this article

Optimal configuration and economic analysis of PRO-retrofitted industrial networks for sustainable energy production and material recovery considering uncertainties: Bioethanol and sugar mill case study

Author

Listed:
  • Safder, Usman
  • Lim, Juin Yau
  • How, Bing Shen
  • Ifaei, Pouya
  • Heo, SungKy
  • Yoo, ChangKyoo

Abstract

In this study, an optimal scheme is proposed by utilizing waste streams at a plant-wide scale along with pressure retarded osmosis (PRO) membrane allocation in complex industrial networks for energy recovery. Chemical exergy pinch analysis (ChExPA) and process graph (P-graph) are used to address the problem. The ultimate goals of utilizing the tools are (1) determine the optimal external load consumption, (2) minimizing the waste discharge, and (3) sustainable energy production while utilizing high chemical exergy potential waste discharges. A reliability assessment assisted with Monte-Carlo simulation is further performed to evaluate the proposed solutions from P-graph considering uncertainties. The effectiveness of the proposed methodology is explained using three industrial case studies which covered both intra-plant and inter-plant networks. The results indicated that ChExPA and P-graph can effectively identify the optimal location of the PRO membrane in industrial networks. Upon analyzing the complex inter-plant industrial networks 7.795 MW net power output was harnessed, and significantly higher waste of 384.92 kg/s was recovered with a levelized cost of energy of 0.073 $/kWh. The inter-plant network shows the greatest net profit which accounted for approximately $1,191,000 (i.e., 5.84 times higher than stand-alone plants) with a reasonable payback-period of 4.5 years.

Suggested Citation

  • Safder, Usman & Lim, Juin Yau & How, Bing Shen & Ifaei, Pouya & Heo, SungKy & Yoo, ChangKyoo, 2022. "Optimal configuration and economic analysis of PRO-retrofitted industrial networks for sustainable energy production and material recovery considering uncertainties: Bioethanol and sugar mill case stu," Renewable Energy, Elsevier, vol. 182(C), pages 797-816.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:797-816
    DOI: 10.1016/j.renene.2021.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández-Polanco, D. & Tatsumi, H., 2016. "Optimum energy integration of thermal hydrolysis through pinch analysis," Renewable Energy, Elsevier, vol. 96(PB), pages 1093-1102.
    2. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    3. Lim, Juin Yau & How, Bing Shen & Rhee, Gahee & Hwangbo, Soonho & Yoo, Chang Kyoo, 2020. "Transitioning of localized renewable energy system towards sustainable hydrogen development planning: P-graph approach," Applied Energy, Elsevier, vol. 263(C).
    4. Safder, Usman & Nguyen, Hai-Tra & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Energetic, economic, exergetic, and exergorisk (4E) analyses of a novel multi-generation energy system assisted with bagasse-biomass gasifier and multi-effect desalination unit," Energy, Elsevier, vol. 219(C).
    5. Karasavvas, Evgenios & Panopoulos, Kyriakos D. & Papadopoulou, Simira & Voutetakis, Spyros, 2020. "Energy and exergy analysis of the integration of concentrated solar power with calcium looping for power production and thermochemical energy storage," Renewable Energy, Elsevier, vol. 154(C), pages 743-753.
    6. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    7. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    8. Kim, Minseok & Kim, Suhan, 2018. "Practical limit of energy production from seawater by full-scale pressure retarded osmosis," Energy, Elsevier, vol. 158(C), pages 373-382.
    9. Abbasi-Garravand, Elham & Mulligan, Catherine N. & Laflamme, Claude B. & Clairet, Guillaume, 2016. "Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation," Renewable Energy, Elsevier, vol. 96(PA), pages 98-119.
    10. Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
    11. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Safder, Usman & Tariq, Shahzeb & Yoo, ChangKyoo, 2022. "Multilevel optimization framework to support self-sustainability of industrial processes for energy/material recovery using circular integration concept," Applied Energy, Elsevier, vol. 324(C).
    3. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safder, Usman & Tariq, Shahzeb & Yoo, ChangKyoo, 2022. "Multilevel optimization framework to support self-sustainability of industrial processes for energy/material recovery using circular integration concept," Applied Energy, Elsevier, vol. 324(C).
    2. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    3. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).
    4. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2021. "Evaluation of n-butene synthesis from dimethyl ether in the production of 1,3-butadiene from lignin: A techno-economic analysis," Renewable Energy, Elsevier, vol. 163(C), pages 964-973.
    6. Loy-Benitez, Jorge & Safder, Usman & Nguyen, Hai-Tra & Li, Qian & Woo, TaeYong & Yoo, ChangKyoo, 2021. "Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network," Energy, Elsevier, vol. 233(C).
    7. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    8. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    10. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    11. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    12. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    13. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Khah, Mohammad Vahabi & Zahedi, Rahim & Mousavi, Mohammad Sadegh & Ahmadi, Abolfazl, 2023. "Forecasting renewable energy utilization by Iran's water and wastewater industries," Utilities Policy, Elsevier, vol. 82(C).
    15. Ruiz-García, A. & Tadeo, F. & Nuez, I., 2023. "Role of permeability coefficients in salinity gradient energy generation by PRO systems with spiral wound membrane modules," Renewable Energy, Elsevier, vol. 215(C).
    16. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    17. Wen Yi Chia & Kuan Shiong Khoo & Shir Reen Chia & Kit Wayne Chew & Guo Yong Yew & Yeek-Chia Ho & Pau Loke Show & Wei-Hsin Chen, 2020. "Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development," Energies, MDPI, vol. 13(2), pages 1-22, January.
    18. Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Lee, Chew Tin & Sam, Kah Chiin & Tan, Sie Ting, 2017. "Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management," Applied Energy, Elsevier, vol. 185(P2), pages 1481-1489.
    19. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    20. Abdelkader, Bassel A. & Navas, Daniel Ruiz & Sharqawy, Mostafa H., 2023. "A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis," Renewable Energy, Elsevier, vol. 203(C), pages 542-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:797-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.