IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp532-548.html
   My bibliography  Save this article

Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study

Author

Listed:
  • Zadravec, Tomas
  • Rajh, Boštjan
  • Kokalj, Filip
  • Samec, Niko

Abstract

An effective air staging strategy is of great importance for achieving low emissions and sensible heat losses through flue gas extraction. In cases where a commercially available system needs to be optimised, often the only viable measure is the modification of process parameters. In this work, the aim is to (1) Discover a combination of the most suitable process parameters based on a multi-criteria decision-making method and (2) To unveil relevant correlations between the two process parameters under study (PA/SA ratio and excess air), emissions and combustion temperatures. A modified commercial small-scale hot water wood pellet boiler was installed into a laboratory heating system. Nine different cases have been addressed within a parametric study, differing in the PA/SA ratio and overall excess air. Emissions, temperatures inside the combustion chamber and the flow rate of air entering the combustion chamber were measured. A low PA/SA ratio of 0.53 (54.7% reduction from factory settings), combined with a low O2 concentration in the flue gases of 5.26% (39.8% reduction from factory settings), and the elimination of infiltration air resulted in a simultaneous reduction of NOx and CO emissions by 14.4% and 93.9% respectively and a flue gas sensible heat loss reduction of 31.6%.

Suggested Citation

  • Zadravec, Tomas & Rajh, Boštjan & Kokalj, Filip & Samec, Niko, 2021. "Influence of air staging strategies on flue gas sensible heat losses and gaseous emissions of a wood pellet boiler: An experimental study," Renewable Energy, Elsevier, vol. 178(C), pages 532-548.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:532-548
    DOI: 10.1016/j.renene.2021.05.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feldmeier, Sabine & Schwarz, Markus & Wopienka, Elisabeth & Pfeifer, Christoph, 2021. "Categorization of small-scale biomass combustion appliances by characteristic numbers," Renewable Energy, Elsevier, vol. 163(C), pages 2128-2136.
    2. Bianco, Vincenzo & Szubel, Mateusz & Matras, Beata & Filipowicz, Mariusz & Papis, Karolina & Podlasek, Szymon, 2021. "CFD analysis and design optimization of an air manifold for a biomass boiler," Renewable Energy, Elsevier, vol. 163(C), pages 2018-2028.
    3. Ehsan Houshfar & Terese Løvås & Øyvind Skreiberg, 2012. "Experimental Investigation on NO x Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets," Energies, MDPI, vol. 5(2), pages 1-21, February.
    4. Archan, Georg & Anca-Couce, Andrés & Buchmayr, Markus & Hochenauer, Christoph & Gruber, Johann & Scharler, Robert, 2021. "Experimental evaluation of primary measures for NOX and dust emission reduction in a novel 200 kW multi-fuel biomass boiler," Renewable Energy, Elsevier, vol. 170(C), pages 1186-1196.
    5. Qiu, Guoquan, 2013. "Testing of flue gas emissions of a biomass pellet boiler and abatement of particle emissions," Renewable Energy, Elsevier, vol. 50(C), pages 94-102.
    6. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    7. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    8. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
    10. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    2. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    3. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    4. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
    3. Artur Kraszkiewicz & Artur Przywara & Stanisław Parafiniuk, 2022. "Emission of Nitric Oxide during the Combustion of Various Forms of Solid Biofuels in a Low-Power Heating Device," Energies, MDPI, vol. 15(16), pages 1-19, August.
    4. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    5. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Stanislav Chicherin & Andrey Zhuikov & Petr Kuznetsov, 2024. "The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System," Sustainability, MDPI, vol. 16(5), pages 1-15, February.
    7. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    8. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    9. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    10. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    11. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    12. Joanna Szyszlak-Bargłowicz & Jacek Wasilewski & Grzegorz Zając & Andrzej Kuranc & Adam Koniuszy & Małgorzata Hawrot-Paw, 2022. "Evaluation of Particulate Matter (PM) Emissions from Combustion of Selected Types of Rapeseed Biofuels," Energies, MDPI, vol. 16(1), pages 1-15, December.
    13. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    14. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    15. Grzegorz Pełka & Mateusz Wygoda & Wojciech Luboń & Przemysław Pachytel & Artur Jachimowski & Marcin Paprocki & Paweł Wyczesany & Jarosław Kotyza, 2021. "Analysis of the Efficiency of a Batch Boiler and Emissions of Harmful Substances during Combustion of Various Types of Wood," Energies, MDPI, vol. 14(20), pages 1-24, October.
    16. Krzysztof Lalik & Mateusz Kozek & Szymon Podlasek & Rafał Figaj & Paweł Gut, 2021. "Q-Learning Neural Controller for Steam Generator Station in Micro Cogeneration Systems," Energies, MDPI, vol. 14(17), pages 1-13, August.
    17. Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).
    18. Chapela, S. & Porteiro, J. & Garabatos, M. & Patiño, D. & Gómez, M.A. & Míguez, J.L., 2019. "CFD study of fouling phenomena in small-scale biomass boilers: Experimental validation with two different boilers," Renewable Energy, Elsevier, vol. 140(C), pages 552-562.
    19. David M. Dias & Pedro R. Resende & Alexandre M. Afonso, 2024. "A Review on Micro-Combustion Flame Dynamics and Micro-Propulsion Systems," Energies, MDPI, vol. 17(6), pages 1-35, March.
    20. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:532-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.