IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp344-362.html
   My bibliography  Save this article

Estimation of capital costs and techno-economic appraisal of parabolic trough solar collector and solar power tower based CSP plants in India for different condenser cooling options

Author

Listed:
  • Aseri, Tarun Kumar
  • Sharma, Chandan
  • Kandpal, Tara C.

Abstract

The choice of condenser cooling option for concentrating solar power (CSP) plants is likely to affect their techno-economic feasibility. In view of this, an attempt has been made to assess relative techno-economics and net life cycle CO2-eq emissions mitigation (LCCM) potential for 50 MW nominal capacity wet-cooled and dry-cooled parabolic trough solar collector (PTSC) and dry-cooled solar power tower (SPT) based CSP plants with 6.0 h of thermal energy storage for two potential locations in India. It was observed that though dry cooling is likely to save significant amount of water (∼92%) in PTSC based plants, the same shall result in higher capital cost, higher performance penalty and higher parasitic power requirements leading to around 20% higher levelized cost of electricity (LCOE) as compared to wet-cooled PTSC based plants. It was also observed that the dry-cooled SPT based plants shall be able to deliver up to 4.5% higher annual electricity output and LCOE is also likely to be lowered by 13% than wet-cooled PTSC based plants. Considering emissions embodied and emissions associated with water transport/extraction from the source and water treatment, the estimation of LCCM from the PTSC and SPT based CSP plants have also been undertaken.

Suggested Citation

  • Aseri, Tarun Kumar & Sharma, Chandan & Kandpal, Tara C., 2021. "Estimation of capital costs and techno-economic appraisal of parabolic trough solar collector and solar power tower based CSP plants in India for different condenser cooling options," Renewable Energy, Elsevier, vol. 178(C), pages 344-362.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:344-362
    DOI: 10.1016/j.renene.2021.05.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Sharon J.W. & Rubin, Edward S., 2013. "Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems," Energy Policy, Elsevier, vol. 63(C), pages 935-950.
    2. Blanco-Marigorta, Ana M. & Victoria Sanchez-Henríquez, M. & Peña-Quintana, Juan A., 2011. "Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant," Energy, Elsevier, vol. 36(4), pages 1966-1972.
    3. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    4. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    5. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    6. Moore, J. & Grimes, R. & Walsh, E. & O'Donovan, A., 2014. "Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser," Energy, Elsevier, vol. 69(C), pages 378-391.
    7. Aseri, Tarun Kumar & Sharma, Chandan & Kandpal, Tara C., 2020. "Estimating capital cost of parabolic trough collector based concentrating solar power plants for financial appraisal: Approaches and a case study for India," Renewable Energy, Elsevier, vol. 156(C), pages 1117-1131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Giaconia & Anna Chiara Tizzoni & Salvatore Sau & Natale Corsaro & Emiliana Mansi & Annarita Spadoni & Tiziano Delise, 2021. "Assessment and Perspectives of Heat Transfer Fluids for CSP Applications," Energies, MDPI, vol. 14(22), pages 1-25, November.
    2. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    3. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    4. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    5. Alessandro Bellucci & Gianluca Caposciutti & Marco Antonelli & Daniele Maria Trucchi, 2023. "Techno-Economic Evaluation of Future Thermionic Generators for Small-Scale Concentrated Solar Power Systems," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    2. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    3. Hahn Menacho, A.J. & Rodrigues, J.F.D. & Behrens, P., 2022. "A triple bottom line assessment of concentrated solar power generation in China and Europe 2020–2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Aseri, Tarun Kumar & Sharma, Chandan & Kandpal, Tara C., 2021. "Cost reduction potential in parabolic trough collector based CSP plants: A case study for India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Aseri, Tarun Kumar & Sharma, Chandan & Kandpal, Tara C., 2020. "Estimating capital cost of parabolic trough collector based concentrating solar power plants for financial appraisal: Approaches and a case study for India," Renewable Energy, Elsevier, vol. 156(C), pages 1117-1131.
    6. Altaee, Ali & Zhou, John & Alhathal Alanezi, Adnan & Zaragoza, Guillermo, 2017. "Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters," Applied Energy, Elsevier, vol. 206(C), pages 303-311.
    7. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    8. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    9. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    10. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    11. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    12. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    13. Moore, J. & Grimes, R. & Walsh, E. & O'Donovan, A., 2014. "Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser," Energy, Elsevier, vol. 69(C), pages 378-391.
    14. Marín-Sáez, Julia & Chemisana, Daniel & Atencia, Jesús & Collados, María-Victoria, 2019. "Outdoor performance evaluation of a holographic solar concentrator optimized for building integration," Applied Energy, Elsevier, vol. 250(C), pages 1073-1084.
    15. Soto-García, M. & Martin-Gorriz, B. & García-Bastida, P.A. & Alcon, F. & Martínez-Alvarez, V., 2013. "Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)," Energy, Elsevier, vol. 55(C), pages 1084-1093.
    16. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    17. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Palenzuela, Patricia & Roca, Lidia & Asfand, Faisal & Patchigolla, Kumar, 2022. "Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants," Energy, Elsevier, vol. 242(C).
    19. Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
    20. Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:344-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.