IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp733-749.html
   My bibliography  Save this article

Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres

Author

Listed:
  • Yousef, Samy
  • Eimontas, Justas
  • Striūgas, Nerijus
  • Abdelnaby, Mohammed Ali

Abstract

Mango waste is one of the most promising sources of renewable energy, especially as this waste represents 40% of the weight of mango fruit and contains a large amount of fat and cellulose that can contribute to converting it into energy products using pyrolysis and gasification process. Within this context, this research aims to investigate pyrolysis and gasification kinetic behavior of mango seed shells (MSS) using TG-FTIR-GC–MS system. The experiments were started by analyzing the composition of different types of Egyptian MSS, then their pyrolysis characteristics and chemical decomposition in N2 and CO2 atmospheres using TG-FTIR system upto 900 °C at heating rates in the range 5–30 °C/min were studied. The GC/MS system was employed to determine the formulated volatile products at the maximum decomposition temperatures (343–346 °C for N2 and 334–340 °C for CO2). Afterwards, the model-free/model-fitting methods, including Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, and Friedman, and Distributed Activation Energy Model (DAEM) were used to estimate the kinetic parameters of pyrolysis of MSS in both atmospheres. Finally, chars derived from pyrolysis were exposed to CO2 gasification process, followed by studying of their kinetic behavior in the modified random pore model (MRPM). The results showed that the decomposed MSS were saturated with a huge amount of volatile products, particularly Carbon dioxide and Ethylene oxide (99.27% in CO2 and 20.77% in N2), while Acetic acid, Propanone, Hexasiloxane, Glycidol, Ethanedial, Ethylene oxide, Formic acid, etc. were the main compounds in case of N2. Meanwhile, the studies of kinetics of pyrolysis showed that the average activation energies were estimated in the range of 231–262 kJ/mol (N2) and 259–333 kJ/mol (CO2). Based on that, pyrolysis and gasification can be adapted as promising technologies to valorize MSS and utilize them as a new sustainable source for renewable energy.

Suggested Citation

  • Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 173(C), pages 733-749.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:733-749
    DOI: 10.1016/j.renene.2021.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Jing & Wang, Shuxiao & Lu, Tao & Wu, Yufeng & Yuan, Haoran & Chen, Yong, 2020. "Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene," Renewable Energy, Elsevier, vol. 160(C), pages 964-973.
    2. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    3. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    4. Wang, Bo & Xu, Fanfan & Zong, Peijie & Zhang, Jinhong & Tian, Yuanyu & Qiao, Yingyun, 2019. "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS," Renewable Energy, Elsevier, vol. 132(C), pages 486-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites," Energy, Elsevier, vol. 233(C).
    2. Xu, Donghua & Lin, Junhao & Ma, Rui & Fang, Lin & Sun, Shichang & Luo, Juan, 2022. "Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation," Renewable Energy, Elsevier, vol. 184(C), pages 124-133.
    3. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    4. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    5. Eimontas, Justas & Yousef, Samy & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Catalytic pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery," Renewable Energy, Elsevier, vol. 179(C), pages 1385-1403.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites," Energy, Elsevier, vol. 233(C).
    2. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    3. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    4. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    5. Alessandra Durazzo & Johannes Kiefer & Massimo Lucarini & Emanuela Camilli & Stefania Marconi & Paolo Gabrielli & Altero Aguzzi & Loretta Gambelli & Silvia Lisciani & Luisa Marletta, 2018. "Qualitative Analysis of Traditional Italian Dishes: FTIR Approach," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    6. Angelika Gryta & Kamil Skic & Agnieszka Adamczuk & Anna Skic & Magdalena Marciniak & Grzegorz Józefaciuk & Patrycja Boguta, 2023. "The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review," Agriculture, MDPI, vol. 14(1), pages 1-43, December.
    7. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    8. Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
    9. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    10. Cueva Zepeda, Lolita & Griffin, Gregory & Shah, Kalpit & Al-Waili, Ibrahim & Parthasarathy, Rajarathinam, 2023. "Energy potential, flow characteristics and stability of water and alcohol-based rice-straw biochar slurry fuel," Renewable Energy, Elsevier, vol. 207(C), pages 60-72.
    11. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    12. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Kwon, Eilhann E. & Lee, Taewoo & Ok, Yong Sik & Tsang, Daniel C.W. & Park, Chanhyuk & Lee, Jechan, 2018. "Effects of calcium carbonate on pyrolysis of sewage sludge," Energy, Elsevier, vol. 153(C), pages 726-731.
    14. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.
    15. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
    16. Liu, Jingxin & Huang, Simian & Wang, Teng & Mei, Meng & Chen, Si & Zhang, Wenjuan & Li, Jinping, 2021. "Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste," Renewable Energy, Elsevier, vol. 179(C), pages 179-188.
    17. Kim, Jung-Hun & Oh, Jeong-Ik & Lee, Jechan & Kwon, Eilhann E., 2019. "Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium," Energy, Elsevier, vol. 179(C), pages 163-172.
    18. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    19. Jiang, Yuan & Zong, Peijie & Tian, Bin & Ming, Xue & Xu, Fanfan & Tian, Yuanyu & Qiao, Yingyun & Li, Dawei & Song, Qingshuo & Yu, Qiankun, 2021. "Pyrolysis of coal group component. Part Ⅰ. Emission characteristics and product distribution of saturate component," Energy, Elsevier, vol. 216(C).
    20. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:733-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.