IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp1385-1403.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Catalytic pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery

Author

Listed:
  • Eimontas, Justas
  • Yousef, Samy
  • Striūgas, Nerijus
  • Abdelnaby, Mohammed Ali

Abstract

Caprolactam is the main compound of nylon 6 waste fishing nets (WFNs) and its recovery conserves natural resources, maximizes WFNs economic performance, and closes the circular economy loop of the fishing net industry. Within the framework and as a part of the Healthy Seas’ initiative to clean the oceans from waste fishing nets (WFNs), and to valorise it, this research aims to study the catalytic pyrolysis behaviour of the WFNs extracted from oceans in order to study their potential applications in the energy conversion field. The catalytic pyrolysis experiments of WFNs over ZSM-5 Zeolite catalyst (2.5, 5, 10, 20, 50 wt%) were conducted using thermogravimetry (TG) coupled with Fourier-transform infrared spectroscopy (TG-FTIR) and gas chromatography–mass spectrometry (GC-MS) at different heating rates (5–30 °C/min). Also, the kinetics of ZSM-5/WFNs catalytic pyrolysis was studied by model-free methods (KAS, FWO, and Friedman). In addition, the distributed activation energy model (DAEM) and the independent parallel reaction kinetic model (IPR) combined with the optimization algorithm were used to fit the TGA-DTG experimental data and to calculate the parameters that can achieve the minimum deviation. The TGA results showed that the main decomposition zone was located in the range 342–476 °C with a total weight loss 83-75 wt% (based on the amount of catalyst). Meanwhile, FTIR and GC-MS results manifested that alkyl C–H stretch functional group, carbonyl functional group (CO), and caprolactam (83.15%; at 20 wt% of ZSM-5) are the main groups and volatile compounds in the decomposed WFNs samples. The model-free kinetics analysis showed that all activation energies were estimated at 112 kJ/mol (WFNs) and 158, 230, 197, 201, and 220 kJ/mol for ZSM-5/WFNs samples (2.5, 5, 10, 20, 50 wt%). At the same time, DAEM and IPR models proved a high prediction to fit TG curves at all heating rates. Based on these results, catalytic pyrolysis using 20 wt% of ZSM-5 can be used as a promising technology for extracting caprolactam from WFNs with high yield (83%). The recovered caprolactam can be used in the production of nylon fibres, nylon thin films, carpets, textiles, resins, etc.

Suggested Citation

  • Eimontas, Justas & Yousef, Samy & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Catalytic pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery," Renewable Energy, Elsevier, vol. 179(C), pages 1385-1403.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1385-1403
    DOI: 10.1016/j.renene.2021.07.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121011526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 173(C), pages 733-749.
    2. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites," Energy, Elsevier, vol. 233(C).
    3. Wang, Bo & Xu, Fanfan & Zong, Peijie & Zhang, Jinhong & Tian, Yuanyu & Qiao, Yingyun, 2019. "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS," Renewable Energy, Elsevier, vol. 132(C), pages 486-496.
    4. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    2. Chen, Minzi & Zhang, Shuping & Su, Yinhai & Niu, Xin & Zhu, Shuguang & Liu, Xinzhi, 2022. "Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil," Renewable Energy, Elsevier, vol. 186(C), pages 105-114.
    3. Justas Eimontas & Adolfas Jančauskas & Kęstutis Zakarauskas & Nerijus Striūgas & Lina Vorotinskienė, 2023. "Investigation of Optimal Temperature for Thermal Catalytic Conversion of Marine Biomass for Recovery of Higher-Added-Value Energy Products," Energies, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites," Energy, Elsevier, vol. 233(C).
    2. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    3. Alessandra Durazzo & Johannes Kiefer & Massimo Lucarini & Emanuela Camilli & Stefania Marconi & Paolo Gabrielli & Altero Aguzzi & Loretta Gambelli & Silvia Lisciani & Luisa Marletta, 2018. "Qualitative Analysis of Traditional Italian Dishes: FTIR Approach," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    4. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    5. Zhang, Yun & Zhang, Chuanbiao & Li, Wenjuan & Xiao, Qiuping & Jiao, Fengyuan & Xu, Sen & Lan, Yanhua & Fu, Yizheng & Shu, Chi-Min & Cao, Weiguo, 2023. "Reaction mechanism of stearic acid pyrolysis via reactive molecular dynamics simulation and TG-IR technology," Renewable Energy, Elsevier, vol. 217(C).
    6. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
    7. Copik, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2023. "A comparative study on thermochemical decomposition of lignocellulosic materials for energy recovery from waste: Monitoring of evolved gases, thermogravimetric, kinetic and surface analyses of produce," Energy, Elsevier, vol. 285(C).
    8. Jiang, Yuan & Zong, Peijie & Tian, Bin & Ming, Xue & Xu, Fanfan & Tian, Yuanyu & Qiao, Yingyun & Li, Dawei & Song, Qingshuo & Yu, Qiankun, 2021. "Pyrolysis of coal group component. Part Ⅰ. Emission characteristics and product distribution of saturate component," Energy, Elsevier, vol. 216(C).
    9. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    10. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    11. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    12. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    13. Xu, Donghua & Lin, Junhao & Ma, Rui & Fang, Lin & Sun, Shichang & Luo, Juan, 2022. "Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation," Renewable Energy, Elsevier, vol. 184(C), pages 124-133.
    14. Turgay Kar & Ömer Kaygusuz & Mükrimin Şevket Güney & Erdem Cuce & Sedat Keleş & Saboor Shaik & Abdulhameed Babatunde Owolabi & Benyoh Emmanuel Kigha Nsafon & Johnson Makinwa Ogunsua & Jeung-Soo Huh, 2023. "Fast Pyrolysis of Tea Bush, Walnut Shell, and Pine Cone Mixture: Effect of Pyrolysis Parameters on Pyrolysis Crop Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    15. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 173(C), pages 733-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1385-1403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.