IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp788-798.html
   My bibliography  Save this article

Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor

Author

Listed:
  • Park, Sung Jin
  • Son, Seong Hye
  • Kook, Jin Woo
  • Ra, Ho Won
  • Yoon, Sang Jun
  • Mun, Tae-Young
  • Moon, Ji Hong
  • Yoon, Sung Min
  • Kim, Jae Ho
  • Kim, Yong Ku
  • Lee, Jae Goo
  • Lee, Do-Yong
  • Seo, Myung Won

Abstract

Converting rice husk into energy is a promising method of generating renewable energy and reducing greenhouse gas emissions. The characteristics of rice husk gasification were investigated at an equivalence ratio (ER) of 0.20–0.35 and a gasifier temperature of 700–850 °C in a 20-tons-per-day (TPD) bubbling fluidized-bed gasifier system. The optimal conditions of the gasification operation were an ER of 0.20 and gasifier temperature of 800 °C. The low heating value of the gas product and cold gas efficiency were 1373.18 kcal/Nm3 and 70.75%, respectively. After passing the generated gas through the gas cleaning units, it was confirmed that the tar in the product gas was removed with an efficiency of 98%. The cleaned product gas was used for the operation of 400 kWe gas engine. Pressure loss often occurred at the bottom of the gasifier during the gasification operation; we found that the agglomerates generated by the gasification process caused it. Computational particle fluid dynamics simulations were performed to investigate the fluidizing characteristics of agglomerates. To prevent the pressure loss caused by the agglomerates, the stable control of temperature inside the gasifier is needed and an ash removal device remove agglomerates should be installed to maintain stable long-term operation.

Suggested Citation

  • Park, Sung Jin & Son, Seong Hye & Kook, Jin Woo & Ra, Ho Won & Yoon, Sang Jun & Mun, Tae-Young & Moon, Ji Hong & Yoon, Sung Min & Kim, Jae Ho & Kim, Yong Ku & Lee, Jae Goo & Lee, Do-Yong & Seo, Myung , 2021. "Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor," Renewable Energy, Elsevier, vol. 169(C), pages 788-798.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:788-798
    DOI: 10.1016/j.renene.2021.01.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    2. Hiloidhari, M. & Baruah, D.C., 2011. "Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1885-1892, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jong-Woo & Jeong, Yong-Seong & Kim, Joo-Sik, 2022. "Bubbling fluidized bed biomass gasification using a two-stage process at 600 °C: A way to avoid bed agglomeration," Energy, Elsevier, vol. 250(C).
    2. Rahman, Md Mashiur & Aravindakshan, Sreejith & Matin, Md Abdul, 2021. "Design and performance evaluation of an inclined nozzle and combustor of a downdraft moving bed gasifier for tar reduction," Renewable Energy, Elsevier, vol. 172(C), pages 239-250.
    3. Devin Peck & Mark Zappi & Daniel Gang & John Guillory & Rafael Hernandez & Prashanth Buchireddy, 2023. "Review of Porous Ceramics for Hot Gas Cleanup of Biomass Syngas Using Catalytic Ceramic Filters to Produce Green Hydrogen/Fuels/Chemicals," Energies, MDPI, vol. 16(5), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyoung Chun & Jin Hyung Lee, 2020. "Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    2. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    3. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    4. Massoud Sofi & Ylias Sabri & Zhiyuan Zhou & Priyan Mendis, 2019. "Transforming Municipal Solid Waste into Construction Materials," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    5. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    6. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    7. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    8. Daniel del Barrio Alvarez & Masahiro Sugiyama, 2020. "A SWOT Analysis of Utility-Scale Solar in Myanmar," Energies, MDPI, vol. 13(4), pages 1-17, February.
    9. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    10. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    11. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    13. Almeshqab, Fatema & Ustun, Taha Selim, 2019. "Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 35-53.
    14. Xinliang Xu & Ying Fu & Shuang Li, 2013. "Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010," Energies, MDPI, vol. 6(12), pages 1-17, November.
    15. Shaheen, Sabry M. & Antoniadis, Vasileios & Shahid, Muhammad & Yang, Yi & Abdelrahman, Hamada & Zhang, Tao & Hassan, Noha E.E. & Bibi, Irshad & Niazi, Nabeel Khan & Younis, Sherif A. & Almazroui, Mans, 2022. "Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Cao, Jie & Pang, Bin & Mo, Xiaoping & Xu, Fangyan, 2016. "A new model that using transfer stations for straw collection and transportation in the rural areas of China: A case of Jinghai, Tianjin," Renewable Energy, Elsevier, vol. 99(C), pages 911-918.
    17. Yuan, Ye & Zhao, Jianing, 2014. "Study on the supply capacity of crop residue as energy in rural areas of Heilongjiang province of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 526-536.
    18. Wang, Chengxin & Bi, Haobo & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong, 2020. "Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 1048-1066.
    19. Tumen Ozdil, N.F. & Caliskan, M., 2022. "Energy potential from biomass from agricultural crops: Development prospects of the Turkish bioeconomy," Energy, Elsevier, vol. 249(C).
    20. Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:788-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.