IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017736.html
   My bibliography  Save this article

Catalytic gasification of pinewood biomass in a fluidized bed reactor with dolomite, limestone, and activated carbon: An experimental study

Author

Listed:
  • Mohanty, Rajaram
  • Mahanta, Pinakeswar
  • Mahapatro, Abinash
  • Sharma, Ram Prakash

Abstract

The biomass residues from non-edible crop portions or agro-industrial are good fuel for hydrogen-rich syngas production since they reduce waste and promote sustainability. Dolomite was utilized as a natural catalyst for biomass gasification in a fluidized bed gasifier with air as a gasifying agent to increase syngas quality. The study examines the impact of temperature (700–850 °C), equivalency ratio (0.2–0.35), and catalyst-to-biomass blending proportion (10–50 %) on syngas composition. This study examined gasification's lower heating value, dry gas output, carbon conversion efficiency, cold gas efficiency, and tar yield. A temperature above 800 °C, an equivalence ratio of 0.30, and a dolomite concentration of 40 % are the best operating conditions to achieve the best clean gas (minimum tar yield = 1.87 g/Nm3). The maximum concentration of H2 (11.23 %) was achieved at 850 °C, an equivalence ratio of 0.20, and a dolomite concentration of 50 % with the biomass. The present study confirms the potential of natural catalysts to reduce tar and enhance H2 contents by absorbing CO2. As compared to costly synthetic catalysts natural-based catalysts are cost-effective and the flexible ex-situ gas cleaning beds have the potential to be easily scalable for industrial-scale production.

Suggested Citation

  • Mohanty, Rajaram & Mahanta, Pinakeswar & Mahapatro, Abinash & Sharma, Ram Prakash, 2025. "Catalytic gasification of pinewood biomass in a fluidized bed reactor with dolomite, limestone, and activated carbon: An experimental study," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017736
    DOI: 10.1016/j.energy.2025.136131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jong-Woo & Jeong, Yong-Seong & Kim, Joo-Sik, 2022. "Bubbling fluidized bed biomass gasification using a two-stage process at 600 °C: A way to avoid bed agglomeration," Energy, Elsevier, vol. 250(C).
    2. Dasar, Sangappa R. & Boche, Abhijeet M. & Yadav, Ajay K. & S., Anish, 2023. "Sorption–desorption characteristics of dried cow dung with PVP and clay as composite desiccants: Experimental and exergetic analysis," Renewable Energy, Elsevier, vol. 202(C), pages 394-404.
    3. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Park, Sung Jin & Son, Seong Hye & Kook, Jin Woo & Ra, Ho Won & Yoon, Sang Jun & Mun, Tae-Young & Moon, Ji Hong & Yoon, Sung Min & Kim, Jae Ho & Kim, Yong Ku & Lee, Jae Goo & Lee, Do-Yong & Seo, Myung , 2021. "Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor," Renewable Energy, Elsevier, vol. 169(C), pages 788-798.
    5. Wang, Yuzhuo & Wu, Jun Jie, 2023. "Thermochemical conversion of biomass: Potential future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    7. Pio, D.T. & Gomes, H.G.M.F. & Ruivo, L.C.M. & Matos, M.A.A. & Monteiro, J.F. & Frade, J.R. & Tarelho, L.A.C., 2021. "Concrete as low-cost catalyst to improve gas quality during biomass gasification in a pilot-scale gasifier," Energy, Elsevier, vol. 233(C).
    8. Mu, Qingnan & Aleem, Rao Danish & Liu, Chang & Elendu, Collins Chimezie & Cao, Changqing & Duan, Pei-Gao, 2024. "Oxygen blown steam gasification of different kinds of lignocellulosic biomass for the production of hydrogen-rich syngas," Renewable Energy, Elsevier, vol. 232(C).
    9. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    10. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    11. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    12. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gomes, Helena G.M.F. & Lopes, Daniela V. & Moura, Jéssica M. & Ribeiro, João P. & Cruz, Nuno C. & Matos, Manuel A.A. & Tarelho, Luís A.C., 2025. "Biomass fly ash granules as a promising catalyst to promote producer gas quality from residual forest biomass steam gasification," Energy, Elsevier, vol. 319(C).
    2. Zachl, A. & Buchmayr, M. & Gruber, J. & Anca-Couce, A. & Scharler, R. & Hochenauer, C., 2022. "Evaluation and extension of the load and fuel flexibility limits of a stratified downdraft gasifier," Energy, Elsevier, vol. 239(PD).
    3. Anand, Amrit & Kachhap, Anju & Gautam, Shalini, 2023. "Synergistic effect of coal and biomass gasification and organo-inorganic elemental impact on gasification performance and product gas," Energy, Elsevier, vol. 282(C).
    4. Kim, Jae-Kyung & Jeong, Yong-Seong & Kim, Jong-Woo & Kim, Joo-Sik, 2023. "Two-stage thermochemical conversion of polyethylene terephthalate using steam to produce a clean and H2- and CO-rich syngas," Energy, Elsevier, vol. 276(C).
    5. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    6. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    7. Šuhaj, Patrik & Husár, Jakub & Haydary, Juma & Annus, Július, 2022. "Experimental verification of a pilot pyrolysis/split product gasification (PSPG) unit," Energy, Elsevier, vol. 244(PA).
    8. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
    9. Chaudhary, Anu & Rathour, Ranju Kumari & Solanki, Preeti & Mehta Kakkar, Preeti & Pathania, Shruti & Walia, Abhishek & Baadhe, Rama Raju & Bhatia, Ravi Kant, 2025. "Recent technological advancements in biomass conversion to biofuels and bioenergy for circular economy roadmap," Renewable Energy, Elsevier, vol. 244(C).
    10. Chen, Zhaoguang & Lei, Can & Yao, Lingling & Mo, Yan & Li, Junxiang & Qu, Hongwei & Zhou, Zhi & Luo, Wei, 2025. "Synergistic pyrolysis of rice and chili straw under N2/CO2 atmosphere: Nutritional elements (N/P/K) migration and transformation from straw to pyrolysis products," Energy, Elsevier, vol. 316(C).
    11. Ye, Lian & Zhang, Jianliang & Xu, Runsheng & Xia, Jinghui & Zhang, Nan & Jia, Guoli & Lan, Dawei, 2025. "In-depth study on the synergistic mechanism of natural iron ores for biomass gasification: Intrinsic characteristics, iron ore properties and gasification kinetics," Energy, Elsevier, vol. 316(C).
    12. Li, Jishuo & Wang, Tie & Hao, Tengteng & Yao, Xiwen & Xu, Kaili & Liu, Jia, 2025. "Application of biochar catalysts in tar catalytic reforming: A review on preparation, modification, deactivation, and regeneration," Energy, Elsevier, vol. 317(C).
    13. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    14. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
    15. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    17. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    18. Ren, Liang & Gong, Yan & Wang, Xingjun & Guo, Qinghua & Yu, Guangsuo, 2023. "Study on recovery of residual carbon from coal gasification fine slag and the influence of oxidation on its characteristics," Energy, Elsevier, vol. 279(C).
    19. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    20. Li, Meng & Wu, Hao & Xu, Jianliang & Yu, Guangsuo & Chen, Xueli, 2023. "Exploring influence of MgO/SiO2 on viscosity-temperature property of coal ash slags under entrained flow gasification condition," Energy, Elsevier, vol. 284(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.