IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7370-d1724777.html
   My bibliography  Save this article

Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review

Author

Listed:
  • Miaomiao Zhu

    (Faculty of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qi Wang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shuang Wang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Biomass gasification represents a pivotal technology for sustainable energy and chemical production, yet its efficiency and product quality are critically dependent on catalyst performance. This comprehensive review systematically synthesizes recent advancements in catalyst design, mechanistic insights, and process integration in biomass gasification. Firstly, it details the development and performance of catalysts in diverse categories, including metal-based catalysts, Ca-based catalysts, natural mineral catalysts, composite/supported catalysts, and emerging waste-derived catalysts. Secondly, this review delves into the fundamental catalytic reaction mechanisms governing key processes such as tar cracking/reforming, water–gas shift, and methane reforming. It further explores sophisticated strategies for catalyst structure optimization, focusing on pore structure/surface area control, strong metal–support interactions (SMSIs), alloying effects, nanodispersion, and crystal phase design. The critical challenges of catalyst deactivation mechanisms and the corresponding activation, regeneration strategies, and post-regeneration performance evaluation are thoroughly discussed. Thirdly, this review addresses the crucial integration of zero CO 2 emission concepts, covering in situ CO 2 adsorption/conversion, carbon capture and storage (CCS) integration, catalytic CO 2 reduction/valorization, multi-energy system synergy, and environmental impact/life cycle analysis (LCA). By synthesizing cutting-edge research, this review identifies key knowledge gaps and outlines future research directions towards designing robust, cost-effective, and environmentally benign catalysts for next-generation, carbon-neutral biomass gasification systems.

Suggested Citation

  • Miaomiao Zhu & Qi Wang & Shuang Wang, 2025. "Recent Advances and Future Perspectives in Catalyst Development for Efficient and Sustainable Biomass Gasification: A Comprehensive Review," Sustainability, MDPI, vol. 17(16), pages 1-28, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7370-:d:1724777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7370/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7370-:d:1724777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.