IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1046-1062.html
   My bibliography  Save this article

Parametric study on the effect of inlet and outlet pipe shape on the flow fluctuation characteristics associated with a positive displacement hydraulic turbine

Author

Listed:
  • Sonawat, Arihant
  • Choi, Young-Seok
  • Kim, Kyung Min
  • Kim, Jin-Hyuk

Abstract

For applications involving very low specific speeds resulting from very low flow rates with medium to high heads, a special class of hydraulic turbine known as Positive displacement turbine (PDT) is most suited. These turbines are not very common, but they can effectively harness the micro and Pico hydropower. For the present work, the effect of inlet and outlet pipe’s cross-sectional shape on the fluid flow pulsations and overall performance of the developed PDT has been analyzed using Computational Fluid Dynamics (CFD) approach. Initially, the cross-sectional shape of the pipe used for transporting the working fluid to and from the turbine rotors was circular. Subsequently, the influence of square and rectangular cross-sectional shaped pipe designs was analyzed. Also, parametric studies were performed to find the dimensions of rectangular and variable cross-sectional shaped pipes. It was observed that the initial flow pulsations greatly reduced for specified variable cross-sectional pipe compared to the other shapes. Also, an increment of 0.824% in hydraulic efficiency was observed compared to the initial circular pipe. At the rated conditions, the PDT with twisted rotors having fully circular shaped pipe developed 7.15 kW of output power with a hydraulic efficiency of 66.2% from the experimental study.

Suggested Citation

  • Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2021. "Parametric study on the effect of inlet and outlet pipe shape on the flow fluctuation characteristics associated with a positive displacement hydraulic turbine," Renewable Energy, Elsevier, vol. 163(C), pages 1046-1062.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1046-1062
    DOI: 10.1016/j.renene.2020.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yongxiu & Xu, Yang & Pang, Yuexia & Tian, Huiying & Wu, Rui, 2016. "A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path," Renewable Energy, Elsevier, vol. 89(C), pages 695-705.
    2. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    3. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    4. Lau, Lee Chung & Lee, Keat Teong & Mohamed, Abdul Rahman, 2012. "Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5280-5284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Zhu, Qianming & Qi, Yinke & Huang, Diangui, 2023. "Numerical simulation of performance of traveling wave pump-turbine at different wave speeds in pumping mode," Renewable Energy, Elsevier, vol. 203(C), pages 485-494.
    4. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonawat, Arihant & Yang, Hyeon-Mo & Kim, Jin-Hyuk, 2021. "Experimental study of positive displacement hydraulic turbine at various temperatures and development of empirical co-relation for flowrate prediction," Renewable Energy, Elsevier, vol. 172(C), pages 1293-1300.
    2. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    3. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    4. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    5. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    6. Yuanxin Liu & FengYun Li & Xinhua Yu & Jiahai Yuan & Dong Zhou, 2018. "Assessing the Credit Risk of Corporate Bonds Based on Factor Analysis and Logistic Regress Analysis Techniques: Evidence from New Energy Enterprises in China," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    7. Cary, Michael, 2023. "Climate policy boosts trade competitiveness: Evidence from timber trade networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Lin, Boqiang & Wu, Wei, 2017. "Cost of long distance electricity transmission in China," Energy Policy, Elsevier, vol. 109(C), pages 132-140.
    9. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    10. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    11. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    12. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    13. Hui Zhang & Haiqian Ke, 2022. "Spatial Spillover Effects of Directed Technical Change on Urban Carbon Intensity, Based on 283 Cities in China from 2008 to 2019," IJERPH, MDPI, vol. 19(3), pages 1-19, February.
    14. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    15. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    16. Gallo, Michela & Del Borghi, Adriana & Strazza, Carlo & Parodi, Lara & Arcioni, Livia & Proietti, Stefania, 2016. "Opportunities and criticisms of voluntary emission reduction projects developed by Public Administrations: Analysis of 143 case studies implemented in Italy," Applied Energy, Elsevier, vol. 179(C), pages 1269-1282.
    17. Fabian Jintae Froese & Dylan Sutherland & Jeoung Yul Lee & Yipeng Liu & Yuan Pan, 2019. "Challenges for foreign companies in China: implications for research and practice," Asian Business & Management, Palgrave Macmillan, vol. 18(4), pages 249-262, September.
    18. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    19. Paolo Iodice & Massimo Cardone, 2020. "Impact of a trigeneration power system fuelled by vegetable oil on environmental air pollution by numerical simulations," Energy & Environment, , vol. 31(7), pages 1200-1213, November.
    20. Chen, Kaihua & Ren, Zhipeng & Mu, Shijun & Sun, Tara Qian & Mu, Rongping, 2020. "Integrating the Delphi survey into scenario planning for China's renewable energy development strategy towards 2030," Technological Forecasting and Social Change, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1046-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.