IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp993-1004.html
   My bibliography  Save this article

Validation of a turbulence numerical 3D model for an open channel with strong tidal currents

Author

Listed:
  • Garcia Novo, Patxi
  • Kyozuka, Yusaku

Abstract

Turbulence characteristics of tidal currents, essential to predict the performance of tidal stream energy converters, present a significant spatial and temporal variability. Spatial fluctuations can occur within an area of the order of m2, mainly due to the geomorphologic characteristics of the area. Temporally due to ebb-flood asymmetries and also the effect of meteorological agents such as wind and waves, especially at shallower depths. This paper introduces an FVCOM (Finite Volume Community Ocean Model) numerical model validated with current velocity and turbulent kinetic energy data from three measuring devices installed in the Tanoura and Naru Straits (Goto Islands), one of them covering different vertical layers of the water column, confirming its capacity to estimate turbulence conditions at various depths when these are mostly generated by tidal currents. Correlation coefficients obtained under these conditions at the three locations are higher than 0.84 and 0.8 for current velocity and turbulent kinetic energy, respectively. Results from the validated model show that at deeper layers, TKE is primarily determined by the bathymetry characteristics of the area, while for middle and shallower depths the coastline shape is more important.

Suggested Citation

  • Garcia Novo, Patxi & Kyozuka, Yusaku, 2020. "Validation of a turbulence numerical 3D model for an open channel with strong tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 993-1004.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:993-1004
    DOI: 10.1016/j.renene.2020.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Togneri, Michael & Lewis, Matt & Neill, Simon & Masters, Ian, 2017. "Comparison of ADCP observations and 3D model simulations of turbulence at a tidal energy site," Renewable Energy, Elsevier, vol. 114(PA), pages 273-282.
    2. Bouferrouk, Abdessalem & Hardwick, Jonathan P. & Colucci, Antonella M. & Johanning, Lars, 2016. "Quantifying turbulence from field measurements at a mixed low tidal energy site," Renewable Energy, Elsevier, vol. 87(P1), pages 478-492.
    3. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    4. Garcia Novo, Patxi & Kyozuka, Yusaku & Ginzo Villamayor, Maria Jose, 2019. "Evaluation of turbulence-related high-frequency tidal current velocity fluctuation," Renewable Energy, Elsevier, vol. 139(C), pages 313-325.
    5. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    6. Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
    7. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
    8. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    9. Williamson, Benjamin & Fraser, Shaun & Williamson, Laura & Nikora, Vladimir & Scott, Beth, 2019. "Predictable changes in fish school characteristics due to a tidal turbine support structure," Renewable Energy, Elsevier, vol. 141(C), pages 1092-1102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patxi Garcia-Novo & Daniel Coles & Yusaku Kyozuka & Reiko Yamada & Haruka Moriguchi & Daisaku Sakaguchi, 2023. "Optimization of a Tidal–Wind–Solar System to Enhance Supply–Demand Balancing and Security: A Case Study of the Goto Islands, Japan," Sustainability, MDPI, vol. 15(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia Novo, Patxi & Kyozuka, Yusaku & Ginzo Villamayor, Maria Jose, 2019. "Evaluation of turbulence-related high-frequency tidal current velocity fluctuation," Renewable Energy, Elsevier, vol. 139(C), pages 313-325.
    2. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    3. Su-jin Hwang & Chul H. Jo, 2019. "Tidal Current Energy Resource Distribution in Korea," Energies, MDPI, vol. 12(22), pages 1-15, November.
    4. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    5. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    6. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    7. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    8. Larissa Perez & Remo Cossu & Camille Couzi & Irene Penesis, 2020. "Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment," Energies, MDPI, vol. 13(5), pages 1-21, March.
    9. Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
    10. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    11. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    12. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.
    13. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    14. Myriam Slama & Camille Choma Bex & Grégory Pinon & Michael Togneri & Iestyn Evans, 2021. "Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race," Energies, MDPI, vol. 14(13), pages 1-23, June.
    15. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    16. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    17. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    18. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    19. Wang, Longyan & Xu, Jian & Luo, Wei & Luo, Zhaohui & Xie, Junhang & Yuan, Jianping & Tan, Andy C.C., 2022. "A deep learning-based optimization framework of two-dimensional hydrofoils for tidal turbine rotor design," Energy, Elsevier, vol. 253(C).
    20. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:993-1004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.