IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1874-1889.html
   My bibliography  Save this article

Thermal performance and effectiveness of a dual-porous domestic heat exchanger for building heating application

Author

Listed:
  • Huu-Quan, Do
  • Memarian, Amir
  • Izadi, Mohsen
  • Shehzad, Sabir Ali

Abstract

With the development of problems caused by burning fossil fuels as well as limited and exhaustible energy resources, there is a growing interest in clean and renewable energies as a reliable alternative to fossil fuels. The thermal performance of a dual-porous heat exchanger (SDPHE) in building heating is investigated in this article. The characteristic equations for both porous media and the solid wall are discretized and solved numerically by finite element method (FEM) based on finite volume. The efficacy of various parameters including the Reynolds number, Darcy number and porosity of both porous media, middle wall thickness, middle wall material and volume fraction on the thermal performance of dual-porous heat exchanger is demonstrated and interpreted. According to the results, as the Darcy number and the congestion of nanoparticles on each side increased, the effectiveness of dual-porous heat exchanger is increased. In contrast, an increase in porosity on each side caused a decline in the effectiveness of dual-porous heat exchanger. Moreover, the thermal performance first increased and then reduced with an increase in hot side Reynolds number.

Suggested Citation

  • Huu-Quan, Do & Memarian, Amir & Izadi, Mohsen & Shehzad, Sabir Ali, 2020. "Thermal performance and effectiveness of a dual-porous domestic heat exchanger for building heating application," Renewable Energy, Elsevier, vol. 162(C), pages 1874-1889.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1874-1889
    DOI: 10.1016/j.renene.2020.09.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehghan, Maziar & Rahmani, Yousef & Domiri Ganji, Davood & Saedodin, Seyfollah & Valipour, Mohammad Sadegh & Rashidi, Saman, 2015. "Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis," Renewable Energy, Elsevier, vol. 74(C), pages 448-455.
    2. Atwany, Hanin & Hamdan, Mohammad O. & Abu-Nabah, Bassam A. & Alami, Abdul Hai & Attom, Mousa, 2020. "Experimental evaluation of ground heat exchanger in UAE," Renewable Energy, Elsevier, vol. 159(C), pages 538-546.
    3. Yu, Xiaohui & Li, Hongwei & Yao, Sheng & Nielsen, Vilhjalmur & Heller, Alfred, 2020. "Development of an efficient numerical model and analysis of heat transfer performance for borehole heat exchanger," Renewable Energy, Elsevier, vol. 152(C), pages 189-197.
    4. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jing & Li, Fan & Li, Haoran & Sun, Bo & Zhang, Chenghui & Liu, Shuai, 2023. "Novel dynamic equivalent circuit model of integrated energy systems," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Piotrowska-Woroniak & Tomasz Szul & Grzegorz Woroniak, 2023. "Application of a Model Based on Rough Set Theory (RST) for Estimating the Temperature of Brine from Vertical Ground Heat Exchangers (VGHE) Operated with a Heat Pump—A Case Study," Energies, MDPI, vol. 16(20), pages 1-12, October.
    2. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    3. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    4. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    5. Adel Eswiasi & Phalguni Mukhopadhyaya, 2021. "Performance of Conventional and Innovative Single U-Tube Pipe Configuration in Vertical Ground Heat Exchanger (VGHE)," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    6. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    7. Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2018. "Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 946-953.
    8. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    9. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    11. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    12. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
    13. Azmat Ullah & Suheel Abdullah Malik & Khurram Saleem Alimgeer, 2018. "Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-18, January.
    14. Rashidi, Saman & Kashefi, Mohammad Hossein & Kim, Kyung Chun & Samimi-Abianeh, Omid, 2019. "Potentials of porous materials for energy management in heat exchangers – A comprehensive review," Applied Energy, Elsevier, vol. 243(C), pages 206-232.
    15. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    16. Jamal-Abad, Milad Tajik & Saedodin, Seyfolah & Aminy, Mohammad, 2016. "Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: A perturbation solution," Renewable Energy, Elsevier, vol. 91(C), pages 147-154.
    17. Reshna Raveendran & Ahmed Hassan & Kheira Anissa Tabet Aoul, 2020. "Diagnoses for Potential Enaction of Water–Energy Nexus in Green Building Rating Systems: Case Study of the Pearl Rating System of United Arab Emirates," Energies, MDPI, vol. 13(20), pages 1-17, October.
    18. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    19. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    20. Daehoon Kim & Seokhoon Oh, 2018. "Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1874-1889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.