IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp982-990.html
   My bibliography  Save this article

Effect of steam-assisted alkaline pretreatment plus enzymolysis on converting corn stalk into reducing sugar

Author

Listed:
  • Liu, Chaoqi
  • Liu, Mengjie
  • Wang, Ping
  • Chang, Juan
  • Yin, Qingqiang
  • Zhu, Qun
  • Lu, Fushan

Abstract

In order to improve corn stalk conversion into total reducing sugar effectively, steam-assisted alkaline pretreatment and enzymatic hydrolysis was studied. This result showed that cellulose and hemicelluloses contents in corn stalk were decreased to 7.01% and 4.41% (P < 0.05), and total reducing sugar yield was increased to 335.09 mg/g biomass (P < 0.05), when corn stalk was pretreated with steam and alkali (0.8% NaOH + 1.2% CaO, W/V) for 1.0 h at a ratio of alkaline solution to corn stalk of 5:1 (V/W), followed by enzymatic hydrolysis at 22.5 FPU/g biomass cellulase for 48 h. The synthetical enzymatic hydrolysis conditions of pretreated corn stalk were pH 5.0, 50 °C, 60 filter paper unit (FPU)/g biomass and 48 h reaction time, in which total reducing sugar yield was 358.97 mg/g biomass (P < 0.05). The further response-surface methodology results showed that the total reducing sugar reached 493.74 mg/g biomass under the conditions of 52.39 FPU/g biomass cellulase, 6599.99 U/g biomass β-glucanase and 40 h reaction time. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and pore structure analyses indicated that steam-assisted alkaline pretreatment plus enzymatic hydrolysis were effective in breaking the crystal structure of corn stalk for increasing total reducing sugar yield.

Suggested Citation

  • Liu, Chaoqi & Liu, Mengjie & Wang, Ping & Chang, Juan & Yin, Qingqiang & Zhu, Qun & Lu, Fushan, 2020. "Effect of steam-assisted alkaline pretreatment plus enzymolysis on converting corn stalk into reducing sugar," Renewable Energy, Elsevier, vol. 159(C), pages 982-990.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:982-990
    DOI: 10.1016/j.renene.2020.06.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jeng-Chen & Chang, Wan-Jhu & Hsu, Teng-Chieh & Chen, Hui-Jye & Chen, Yo-Chia, 2020. "Direct fermentation of cellulose to ethanol by Saccharomyces cerevisiae displaying a bifunctional cellobiohydrolase gene from Orpinomyces sp. Y102," Renewable Energy, Elsevier, vol. 159(C), pages 1029-1035.
    2. Gurevich Messina, L.I. & Bonelli, P.R. & Cukierman, A.L., 2017. "Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells," Renewable Energy, Elsevier, vol. 114(PB), pages 697-707.
    3. Wang, Zhi-Wen & Zhu, Ming-Qiang & Li, Ming-Fei & Wei, Qin & Sun, Run-Cang, 2019. "Effects of hydrothermal treatment on enhancing enzymatic hydrolysis of rapeseed straw," Renewable Energy, Elsevier, vol. 134(C), pages 446-452.
    4. Zoulikha, Maache-Rezzoug & Thierry, Maugard & Jean-Michel Qiuyu, Zhao & Nouviaire, Armelle & Sid-Ahmed, Rezzoug, 2015. "Combined steam-explosion toward vacuum and dilute-acid spraying of wheat straw. Impact of severity factor on enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 78(C), pages 516-526.
    5. Pham, Huong Thi Thu & Nghiem, Nhuan P. & Kim, Tae Hyun, 2018. "Near theoretical saccharification of sweet sorghum bagasse using simulated green liquor pretreatment and enzymatic hydrolysis," Energy, Elsevier, vol. 157(C), pages 894-903.
    6. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    7. Wen, Jia-Long & Sun, Shao-Long & Yuan, Tong-Qi & Xu, Feng & Sun, Run-Cang, 2014. "Understanding the chemical and structural transformations of lignin macromolecule during torrefaction," Applied Energy, Elsevier, vol. 121(C), pages 1-9.
    8. Ahmed, Muhammad Ajaz & Mushtaq, Azeem & Terán-Hilares, Ruly & Saif Ur Rehman, Muhammad & Iqbal, Javed & Raja, Arsalan A & Weon, Choi Joon & Han, Jong-In, 2020. "Dilute acid hydrolysis of sugar canebagasse using a laboratory twin gear reactor," Renewable Energy, Elsevier, vol. 153(C), pages 61-66.
    9. Anu, & Kumar, Anil & Jain, Kavish Kumar & Singh, Bijender, 2020. "Process optimization for chemical pretreatment of rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 156(C), pages 1233-1243.
    10. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    11. Luo, Yiping & Li, Dong & Li, Ruiling & Li, Zheng & Hu, Changwei & Liu, Xiaofeng, 2020. "Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    12. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongpeng Guo & Shuang Xu & Xiaotong Wang & Wen Shu & Jia Chen & Chulin Pan & Cheng Guo, 2021. "Driving Mechanism of Farmers’ Utilization Behaviors of Straw Resources—An Empirical Study in Jilin Province, the Main Grain Producing Region in the Northeast Part of China," Sustainability, MDPI, vol. 13(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    2. Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
    3. Deng, Zhichao & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xianqing & Qiu, Sheng & Zhu, Xun, 2022. "A bio-inspired flexible squeezing reactor for efficient enzymatic hydrolysis of lignocellulosic biomass for bioenergy production," Renewable Energy, Elsevier, vol. 191(C), pages 92-100.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    6. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    7. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    8. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    9. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    10. Dawid Szwarc & Anna Nowicka & Katarzyna Głowacka, 2022. "Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency," Energies, MDPI, vol. 15(14), pages 1-10, July.
    11. Fan, Meishan & Li, Jun & Liu, Zhu & Li, Caiqun & Zhang, Hongdan & Xie, Jun & Chen, Yong, 2023. "Evaluating performance of CrCl3-catalyzed ethanol pretreatment of poplar on cellulose conversion," Renewable Energy, Elsevier, vol. 216(C).
    12. Marcela Sofia Pino & Michele Michelin & Rosa M. Rodríguez-Jasso & Alfredo Oliva-Taravilla & José A. Teixeira & Héctor A. Ruiz, 2021. "Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse," Energies, MDPI, vol. 14(16), pages 1-16, August.
    13. Soo-Kyeong Jang & Hanseob Jeong & In-Gyu Choi, 2023. "The Effect of Cellulose Crystalline Structure Modification on Glucose Production from Chemical-Composition-Controlled Biomass," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    14. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    15. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    16. Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
    17. Yang, Yang & Sun, Mingman & Zhang, Meng & Zhang, Ke & Wang, Donghai & Lei, Catherine, 2019. "A fundamental research on synchronized torrefaction and pelleting of biomass," Renewable Energy, Elsevier, vol. 142(C), pages 668-676.
    18. Asina, FNU & Brzonova, Ivana & Kozliak, Evguenii & Kubátová, Alena & Ji, Yun, 2017. "Microbial treatment of industrial lignin: Successes, problems and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1179-1205.
    19. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    20. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:982-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.