IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032125000255.html
   My bibliography  Save this article

Engineered Saccharomyces cerevisiae for sustainable biobased fuel production: Overcoming bottlenecks and implementing strategies

Author

Listed:
  • Sahoo, Ansuman
  • Das, Prabir Kumar
  • Veeranki, Venkata Dasu
  • Patra, Sanjukta

Abstract

The aim of net zero carbon emission and depleting petroleum reserves have pin-pointed the focus on renewable sources to meet the ever-increasing demand for fuel and high-value chemicals. Saccharomyces cerevisiae is an excellent host for commercial-scale production of biobased fuel due to its robustness in the industrial context, high productivity, and well-known genetic toolbox. However, incomplete sugar utilization and low product yield on renewable feedstocks are the hurdles to achieving consolidated bioprocessing, process efficiency and circular economy. Transporter engineering, transcriptional factor engineering, alteration of cofactor pool, increased resistance towards harsh conditions, and metabolic network rewiring strategies have been employed to eliminate the bottlenecks. Implementing strategies with the genome-scale metabolic model, flux balance analysis, and dynamic multi-omics approaches have fastened the developmental process to achieve a sustainable bioprocess. This review discusses recent advances in bioethanol, biobutanol, and precursors of biofuel production in S. cerevisiae from inexpensive, renewable lignocellulosic feedstock, emphasizing xylose utilization efficiency.

Suggested Citation

  • Sahoo, Ansuman & Das, Prabir Kumar & Veeranki, Venkata Dasu & Patra, Sanjukta, 2025. "Engineered Saccharomyces cerevisiae for sustainable biobased fuel production: Overcoming bottlenecks and implementing strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032125000255
    DOI: 10.1016/j.rser.2025.115352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Adriana Grandis & Janaina da Silva Fortirer & Débora Pagliuso & Marcos S. Buckeridge, 2024. "Scientific Research on Bioethanol in Brazil: History and Prospects for Sustainable Biofuel," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
    2. Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
    3. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yuchen Bai & Huiya Feng & Nan Liu & Xuebing Zhao, 2023. "Biomass-Derived 2,3-Butanediol and Its Application in Biofuels Production," Energies, MDPI, vol. 16(15), pages 1-25, August.
    5. repec:plo:pone00:0199104 is not listed on IDEAS
    6. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    7. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    8. Hui Liu & Pei Zhou & Mengya Qi & Liang Guo & Cong Gao & Guipeng Hu & Wei Song & Jing Wu & Xiulai Chen & Jian Chen & Wei Chen & Liming Liu, 2022. "Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Meng & Guipeng Hu & Xiaomin Li & Cong Gao & Wei Song & Wanqing Wei & Jing Wu & Liming Liu, 2025. "A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    2. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    3. Marisutti, Estela & Viegas, Bruno Marques & Rodrigues, Naira Poerner & Ayub, Marco Antônio Záchia & Rossi, Daniele Misturini, 2024. "Characterization and treatments in soybean hull for 2,3-Butanediol production using Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1," Renewable Energy, Elsevier, vol. 224(C).
    4. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    5. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    6. Vasilakou, K. & Nimmegeers, P. & Billen, P. & Van Passel, S., 2023. "Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
    8. Chenyue Zhang & Qiang Fei & Rongzhan Fu & Maximilian Lackner & Yongjin J. Zhou & Tianwei Tan, 2025. "Economic and sustainable revolution to facilitate one-carbon biomanufacturing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Zaman Sajid & Nicholas Lynch, 2018. "Financial Modelling Strategies for Social Life Cycle Assessment: A Project Appraisal of Biodiesel Production and Sustainability in Newfoundland and Labrador, Canada," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    10. Dawid Szwarc & Anna Nowicka & Katarzyna Głowacka, 2022. "Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency," Energies, MDPI, vol. 15(14), pages 1-10, July.
    11. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Terneus Páez, Carlos Francisco & Viteri Salazar, Oswaldo, 2021. "Analysis of biofuel production in Ecuador from the perspective of the water-food-energy nexus," Energy Policy, Elsevier, vol. 157(C).
    13. Blesh, Jennifer & Hoey, Lesli & Jones, Andrew D. & Friedmann, Harriet & Perfecto, Ivette, 2019. "Development pathways toward “zero hunger”," World Development, Elsevier, vol. 118(C), pages 1-14.
    14. Borujeni, Nasim Espah & Karimi, Keikhosro & Denayer, Joeri F.M. & Kumar, Rajeev, 2022. "Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus," Energy, Elsevier, vol. 240(C).
    15. Javier M. Hernández-Sancho & Arnaud Boudigou & Maria V. G. Alván-Vargas & Dekel Freund & Jenny Arnling Bååth & Peter Westh & Kenneth Jensen & Lianet Noda-García & Daniel C. Volke & Pablo I. Nikel, 2024. "A versatile microbial platform as a tunable whole-cell chemical sensor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    17. Lixia Fang & Xueyan Hao & Jie Fan & Xiaolei Liu & Yaru Chen & Lian Wang & Xiaoying Huang & Hao Song & Yingxiu Cao, 2025. "Genome-scale CRISPRi screen identifies pcnB repression conferring improved physiology for overproduction of free fatty acids in Escherichia coli," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    18. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
    19. Balamurugan, T. & Arun, A. & Sathishkumar, G.B., 2018. "Biodiesel derived from corn oil – A fuel substitute for diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 772-778.
    20. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032125000255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.