IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp140-150.html

Experimental investigation of a wind to thermal energy hydraulic system

Author

Listed:
  • Zdankus, T.
  • Cerneckiene, J.
  • Jonynas, R.
  • Stelmokaitis, G.
  • Fokaides, P.A.

Abstract

In EU households, heating and hot water alone account for 79% of total final energy use (192.5 Mtoe) [1]. The development of smart technologies to cover the heating requirements of the building sector constitutes a major challenge of the EU scientific community. Wind to thermal energy technologies, although they have been investigated thoroughly since the 50’s, did not gain much interest in the recent years. This study aims to analyse a novel wind to thermal energy conversion system, which could potentially be used in the EU building sector, in regions with high wind potential and increased requirements for space heating. The rationale of the proposed solution is based on a hydraulic system and the heat produced mainly due to friction losses of this system. The main idea behind the system is that the energy required to drive the hydraulic pump will be directly provided by a wind turbine. For the investigation of the proposed system, a scale-down test facility, which simulates the performance of the proposed system, was developed and operated at the Kaunas University of Technology. The wind turbine was simulated with the use of an electric motor with variable rotational frequency. Flow control valves were used both as the main energy converter of mechanical energy of the hydraulic fluid to heat as well as to regulate the load of the hydraulic pump. The optimal working conditions of the experimental set-up were defined in terms of the maximum thermal power delivered. The results of the research were summarized by empirical equations, which can be used for further development of the proposed hydraulic system. The study concluded that under optimal conditions, the system may reach an overall efficiency of 58.8%, which is comparable to efficiencies delivered by solar thermal systems for space heating in regions with increased solar potential (EU Mediterranean countries).

Suggested Citation

  • Zdankus, T. & Cerneckiene, J. & Jonynas, R. & Stelmokaitis, G. & Fokaides, P.A., 2020. "Experimental investigation of a wind to thermal energy hydraulic system," Renewable Energy, Elsevier, vol. 159(C), pages 140-150.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:140-150
    DOI: 10.1016/j.renene.2020.05.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Košir, Mitja & Iglič, Nataša & Kunič, Roman, 2018. "Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics," Renewable Energy, Elsevier, vol. 129(PA), pages 527-539.
    2. Braungardt, Sibylle & Bürger, Veit & Zieger, Jana & Bosselaar, Lex, 2019. "How to include cooling in the EU Renewable Energy Directive? Strategies and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 260-267.
    3. Laia, R. & Pousinho, H.M.I. & Melíco, R. & Mendes, V.M.F., 2016. "Bidding strategy of wind-thermal energy producers," Renewable Energy, Elsevier, vol. 99(C), pages 673-681.
    4. Okazaki, Toru & Shirai, Yasuyuki & Nakamura, Taketsune, 2015. "Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 332-338.
    5. Tadas Zdankus & Jurgita Cerneckiene & Andrius Jurelionis & Juozas Vaiciunas, 2016. "Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat," Sustainability, MDPI, vol. 8(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    2. Xingran Liu & Xianpeng Sun & Jinhong He & Da Wang & Xinyang Qiu & Shengshan Bi & Yanfei Cao, 2022. "Study on the Influence of Working-Fluid’s Thermophysical Properties on the Stirring-Heating," Energies, MDPI, vol. 15(13), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadadi, Sina & Kang, Sangkyun & Park, Gwangseok & Lee, Jang-Ho, 2024. "Analysis of the Eddy current of water heating device to convert wind energy directly into heat: Case study maldo island, South Korea," Applied Energy, Elsevier, vol. 376(PB).
    2. Pujades, Estanislao & Orban, Philippe & Bodeux, Sarah & Archambeau, Pierre & Erpicum, Sébastien & Dassargues, Alain, 2017. "Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency?," Applied Energy, Elsevier, vol. 190(C), pages 135-146.
    3. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    4. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    5. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    6. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    7. Vladimir Yu. Linnik & E. Yu. Voronova & Larisa V. Pavlyuk & Alexey Zich, 2020. "Wind Power: Current State and Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 75-79.
    8. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    9. Chang Liu & Mao-Song Cheng & Bing-Chen Zhao & Zhi-Min Dai, 2017. "A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy," Energies, MDPI, vol. 10(12), pages 1-20, December.
    10. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    11. Banaei, Mohsen & Oloomi-Buygi, Majid & Zabetian-Hosseini, Seyed-Mahdi, 2018. "Strategic gaming of wind power producers joined with thermal units in electricity markets," Renewable Energy, Elsevier, vol. 115(C), pages 1067-1074.
    12. Cao, Karl-Kiên & Nitto, Alejandro Nicolás & Sperber, Evelyn & Thess, André, 2018. "Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems," Energy, Elsevier, vol. 164(C), pages 925-936.
    13. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    14. Kim, SangYoun & Heo, SungKu & Nam, KiJeon & Woo, TaeYong & Yoo, ChangKyoo, 2023. "Flexible renewable energy planning based on multi-step forecasting of interregional electricity supply and demand: Graph-enhanced AI approach," Energy, Elsevier, vol. 282(C).
    15. Endemaño-Ventura, Lázaro & Serrano González, Javier & Roldán Fernández, Juan Manuel & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2021. "Optimal energy bidding for renewable plants: A practical application to an actual wind farm in Spain," Renewable Energy, Elsevier, vol. 175(C), pages 1111-1126.
    16. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.
    17. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    18. Zifan Tang & Yue Yin & Chao Chen & Changle Liu & Zhuoxun Li & Benyao Shi, 2025. "A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism," Energies, MDPI, vol. 18(9), pages 1-24, May.
    19. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    20. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Gas Turbine Cycle with External Combustion Chamber for Prosumer and Distributed Energy Systems," Energies, MDPI, vol. 12(18), pages 1-19, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:140-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.