IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp10-22.html
   My bibliography  Save this article

Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed

Author

Listed:
  • Yang, Ren-Xuan
  • Wu, Shan-Luo
  • Chuang, Kui-Hao
  • Wey, Ming-Yen

Abstract

This study aims to develop a two-stage fluidized catalytic bed reactor system for continuous co-production of carbon nanotubes (CNTs) and hydrogen from waste plastics gasification. Ni/Al-SBA-15 and Ni–Cu/CaO–SiO2 catalysts have been synthesized and granulated for CNTs synthesis and hydrogen production in the first- and second-stage reactor, respectively. The operating parameters, including reaction temperature and equivalence ratio (ER), were investigated to confirm the feasibility for CNTs and hydrogen production of this system. The Ni/Al-SBA-15 added in the first-stage reactor enhanced the waste plastics degradation to produce CH4 and C2–C5 hydrocarbons with increasing temperature, which could be used as the source for CNTs synthesis. Lowering the ER promoted the catalytic thermal cracking and reforming of hydrocarbons that contributed to the CNTs and hydrogen production. Nevertheless, the H2 production rate showed a significant increase to 857.6 mmol/h-g catalyst with the assistance of Ni–Cu/CaO–SiO2 in the second-stage reactor. The produced smaller-molecule hydrocarbons from the second-stage reactor with higher temperatures could benefit the co-production of CNTs and hydrogen. The two-stage fluidized catalytic bed gasification system exhibited an optimal performance of high fraction CNTs and H2 when temperatures of first- and second-stage reactor were controlled at 600 and 800 °C, respectively, with 0.1 ER.

Suggested Citation

  • Yang, Ren-Xuan & Wu, Shan-Luo & Chuang, Kui-Hao & Wey, Ming-Yen, 2020. "Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed," Renewable Energy, Elsevier, vol. 159(C), pages 10-22.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:10-22
    DOI: 10.1016/j.renene.2020.05.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    2. Li, Xingxing & Zhu, Gangli & Qi, Suitao & Huang, Jun & Yang, Bolun, 2014. "Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports," Applied Energy, Elsevier, vol. 130(C), pages 846-852.
    3. Lin, Chiou-Liang & Weng, Wang-Chang, 2017. "Effects of different operating parameters on the syngas composition in a two-stage gasification process," Renewable Energy, Elsevier, vol. 109(C), pages 135-143.
    4. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    5. Islam, Aminul & Taufiq-Yap, Yun Hin & Ravindra, Pogaku & Teo, Siow Hwa & Sivasangar, S. & Chan, Eng-Seng, 2015. "Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst," Energy, Elsevier, vol. 89(C), pages 965-973.
    6. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    7. Medrano, J.A. & Oliva, M. & Ruiz, J. & García, L. & Arauzo, J., 2011. "Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed," Energy, Elsevier, vol. 36(4), pages 2215-2224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
    2. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
    4. Ukwuoma, Chiagoziem C. & Cai, Dongsheng & Ukwuoma, Chibueze D. & Chukwuemeka, Mmesoma P. & Ayeni, Blessing O. & Ukwuoma, Chidera O. & Adeyi, Odeh Victor & Huang, Qi, 2025. "Sequential gated recurrent and self attention explainable deep learning model for predicting hydrogen production: Implications and applicability," Applied Energy, Elsevier, vol. 378(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Parrillo, Francesco & Ardolino, Filomena & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2021. "Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor," Energy, Elsevier, vol. 219(C).
    3. Parrillo, Francesco & Ardolino, Filomena & Boccia, Carmine & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2023. "Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 273(C).
    4. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    5. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    6. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    8. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    9. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    10. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    11. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    12. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    13. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    14. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    15. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    16. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    17. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    18. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    19. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    20. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:10-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.