IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v158y2020icp103-113.html
   My bibliography  Save this article

Soiling effect in second-surface CSP mirror and improved cleaning strategies

Author

Listed:
  • Conceição, Ricardo
  • Lopes, Francis M.
  • Tavares, Ailton
  • Lopes, Daniel

Abstract

Deployment of future CSP plants is foreseen to take place in southern Portugal, a region with great potential for solar energy harvesting. For the operation and maintenance of such power plants, it is important to know in advance the potential influence that soiling can have in second-surface mirrors, particularly in the specular reflection. For this reason, a study regarding the effects of soiling in second-surface mirrors’ specular reflection is carried out during a period of one year and a half. Moreover, and since soiling particle deposition can have a crucial economic impact for the energy management of CSP plants, it is important to analyze and establish a method to improve the cleaning operations of a CSP plant considering local conditions. The applied methodology is based in programming artificial cleaning profiles based on ground soiling effect and direct normal irradiance measurements, which are then introduced in a plant simulator to estimate the yearly annual energy production. The generated energy is then used to compare different profiles in face of any possible energy selling price and cleaning costs. The presented method is unique in comparison with current literature, due to its versatility, and can be used for any region.

Suggested Citation

  • Conceição, Ricardo & Lopes, Francis M. & Tavares, Ailton & Lopes, Daniel, 2020. "Soiling effect in second-surface CSP mirror and improved cleaning strategies," Renewable Energy, Elsevier, vol. 158(C), pages 103-113.
  • Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:103-113
    DOI: 10.1016/j.renene.2020.05.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ricardo Conceição & Hugo G. Silva & José Mirão & Manuel Collares-Pereira, 2018. "Organic Soiling: The Role of Pollen in PV Module Performance Degradation," Energies, MDPI, vol. 11(2), pages 1-13, January.
    2. Bouaddi, S. & Ihlal, A. & Fernández-García, A., 2017. "Comparative analysis of soiling of CSP mirror materials in arid zones," Renewable Energy, Elsevier, vol. 101(C), pages 437-449.
    3. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    4. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    3. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    4. Azouzoute, Alae & Zitouni, Houssain & El Ydrissi, Massaab & Hajjaj, Charaf & Garoum, Mohammed & Bennouna, El Ghali & Ghennioui, Abdellatif, 2021. "Developing a cleaning strategy for hybrid solar plants PV/CSP: Case study for semi-arid climate," Energy, Elsevier, vol. 228(C).
    5. Ailton M. Tavares & Ricardo Conceição & Francisco M. Lopes & Hugo G. Silva, 2022. "Development of a Simple Methodology Using Meteorological Data to Evaluate Concentrating Solar Power Production Capacity," Energies, MDPI, vol. 15(20), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Rodrigo, Pedro M. & Gutiérrez, Sebastián & Micheli, Leonardo & Fernández, Eduardo F. & Almonacid, Florencia, 2020. "Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico," MPRA Paper 104173, University Library of Munich, Germany.
    3. Conceição, Ricardo & Vázquez, Iñigo & Fialho, Luis & García, Daniel, 2020. "Soiling and rainfall effect on PV technology in rural Southern Europe," Renewable Energy, Elsevier, vol. 156(C), pages 743-747.
    4. Aránzazu Fernández-García & Adel Juaidi & Florian Sutter & Lucía Martínez-Arcos & Francisco Manzano-Agugliaro, 2018. "Solar Reflector Materials Degradation Due to the Sand Deposited on the Backside Protective Paints," Energies, MDPI, vol. 11(4), pages 1-20, March.
    5. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    6. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    7. Del Pero, Claudio & Aste, Niccolò & Leonforte, Fabrizio, 2021. "The effect of rain on photovoltaic systems," Renewable Energy, Elsevier, vol. 179(C), pages 1803-1814.
    8. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    9. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    10. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    11. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    12. Sánchez-Barroso, Gonzalo & González-Domínguez, Jaime & García-Sanz-Calcedo, Justo & Sanz, Joaquín García, 2021. "Markov chains estimation of the optimal periodicity for cleaning photovoltaic panels installed in the dehesa," Renewable Energy, Elsevier, vol. 179(C), pages 537-549.
    13. Thiel, Christian & Gracia Amillo, Ana & Tansini, Alessandro & Tsakalidis, Anastasios & Fontaras, Georgios & Dunlop, Ewan & Taylor, Nigel & Jäger-Waldau, Arnulf & Araki, Kenji & Nishioka, Kensuke & Ota, 2022. "Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernández, Eduardo F., 2020. "Photovoltaic cleaning frequency optimization under different degradation rate patterns," Renewable Energy, Elsevier, vol. 166(C), pages 136-146.
    15. Mussawir Ul Mehmood & Abasin Ulasyar & Waleed Ali & Kamran Zeb & Haris Sheh Zad & Waqar Uddin & Hee-Je Kim, 2023. "A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network," Energies, MDPI, vol. 16(2), pages 1-14, January.
    16. Yang, Huadong & Wang, Hui, 2022. "Numerical simulation of the dust particles deposition on solar photovoltaic panels and its effect on power generation efficiency," Renewable Energy, Elsevier, vol. 201(P1), pages 1111-1126.
    17. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    18. Lina Alhmoud, 2023. "Why Does the PV Solar Power Plant Operate Ineffectively?," Energies, MDPI, vol. 16(10), pages 1-38, May.
    19. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernandez, Eduardo F., 2020. "Photovoltaic Cleaning Frequency Optimization Under Different Degradation Rate Patterns," MPRA Paper 105008, University Library of Munich, Germany, revised 07 Oct 2020.
    20. Zhao, Ning & Yan, Suying & Zhang, Na & Zhao, Xiaoyan, 2022. "Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 191(C), pages 732-746.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:103-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.