IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp897-910.html

Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning

Author

Listed:
  • Hosseini, Ehsan
  • Aghadavoodi, Ehsan
  • Fernández Ramírez, Luis M.

Abstract

In this paper, passive reinforcement learning (RL) solved by particle swarm optimization policy (PSO–P) is used to handle an adaptive neuro-fuzzy inference system (ANFIS) type-2 structure with unsupervised clustering for controlling the pitch angle of a real wind turbine (WT). The proposed control scheme is based on gain-scheduled reinforcement learning recurrent ANFIS type 2 (GS-RL-RANFIST2) pitch angle controller to maintain the rotor speed at its rated value while smoothing the output power and the performance of the pitch angle system. The practical application of the proposed controller is evaluated by using FAST tool for a real 600 kW WT equipped with a synchronous generator with a full-size power converter (CART3, located at the National Renewable Energy Laboratory, NREL), whose results are compared with those obtained by a gain corrected proportional integral (GC-PI) controller. The results demonstrate that the GS-RL-RANFIST2, which sets the nonlinear characteristics of the system automatically and waves more uncertainties in the windy conditions, allows to increase the energy capture and smooth the output power fluctuation, and therefore, to improve the control and response of the WT.

Suggested Citation

  • Hosseini, Ehsan & Aghadavoodi, Ehsan & Fernández Ramírez, Luis M., 2020. "Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning," Renewable Energy, Elsevier, vol. 157(C), pages 897-910.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:897-910
    DOI: 10.1016/j.renene.2020.05.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chowdhury, M.A. & Hosseinzadeh, N. & Shen, W.X., 2012. "Smoothing wind power fluctuations by fuzzy logic pitch angle controller," Renewable Energy, Elsevier, vol. 38(1), pages 224-233.
    2. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2010. "Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator," Renewable Energy, Elsevier, vol. 35(6), pages 1308-1318.
    3. Civelek, Zafer & Lüy, Murat & Çam, Ertuğrul & Mamur, Hayati, 2017. "A new fuzzy logic proportional controller approach applied to individual pitch angle for wind turbine load mitigation," Renewable Energy, Elsevier, vol. 111(C), pages 708-717.
    4. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    5. Abdalrahman, Gebreel & Melek, William & Lien, Fue-Sang, 2017. "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)," Renewable Energy, Elsevier, vol. 114(PB), pages 1353-1362.
    6. Daniel Hein & Alexander Hentschel & Thomas A. Runkler & Steffen Udluft, 2016. "Reinforcement Learning with Particle Swarm Optimization Policy (PSO-P) in Continuous State and Action Spaces," International Journal of Swarm Intelligence Research (IJSIR), IGI Global Scientific Publishing, vol. 7(3), pages 23-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Padullaparthi, Venkata Ramakrishna & Nagarathinam, Srinarayana & Vasan, Arunchandar & Menon, Vishnu & Sudarsanam, Depak, 2022. "FALCON- FArm Level CONtrol for wind turbines using multi-agent deep reinforcement learning," Renewable Energy, Elsevier, vol. 181(C), pages 445-456.
    2. Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).
    3. Jargalsaikhan, Nyam & Ueda, Soichiro & Masahiro, Furukakoi & Matayoshi, Hidehito & Mikhaylov, Alexey & Byambaa, Sergelen & Senjyu, Tomonobu, 2024. "Exploring influence of air density deviation on power production of wind energy conversion system: Study on correction method," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    2. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    3. Ochoa, Danny & Martinez, Sergio, 2018. "Frequency dependent strategy for mitigating wind power fluctuations of a doubly-fed induction generator wind turbine based on virtual inertia control and blade pitch angle regulation," Renewable Energy, Elsevier, vol. 128(PA), pages 108-124.
    4. Pereira, T.R. & Batista, N.C. & Fonseca, A.R.A. & Cardeira, C. & Oliveira, P. & Melicio, R., 2018. "Darrieus wind turbine prototype: Dynamic modeling parameter identification and control analysis," Energy, Elsevier, vol. 159(C), pages 961-976.
    5. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    6. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    7. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    8. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    9. Shen, He & Ruiz, Alexis & Li, Ni, 2023. "Fast online reinforcement learning control of small lift-driven vertical axis wind turbines with an active programmable four bar linkage mechanism," Energy, Elsevier, vol. 262(PA).
    10. Minhui Tong & Weidong Zhu & Xiang Zhao & Meilin Yu & Kan Liu & Gang Li, 2020. "Free and Forced Vibration Analysis of H-type and Hybrid Vertical-Axis Wind Turbines," Energies, MDPI, vol. 13(24), pages 1-32, December.
    11. Jin, Xin & Li, Lang & Ju, Wenbin & Zhang, Zhaolong & Yang, Xiangang, 2016. "Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 336-351.
    12. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2010. "Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation," Renewable Energy, Elsevier, vol. 35(10), pages 2165-2174.
    13. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    14. Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
    15. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    16. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    17. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.
    18. Bofeng Xu & Yue Yuan & Haoming Liu & Peng Jiang & Ziqi Gao & Xiang Shen & Xin Cai, 2020. "A Pitch Angle Controller Based on Novel Fuzzy-PI Control for Wind Turbine Load Reduction," Energies, MDPI, vol. 13(22), pages 1-16, November.
    19. Wang, Xinbao & Xiao, Yang & Cai, Chang & Wu, Xianyou & Zhang, Yongming & Kong, Detong & Liu, Junbo & Sun, Xiangyu & Zhong, Xiaohui & Li, Qing'an, 2024. "Cyclic pitch control for aerodynamic load reductions of floating offshore wind turbines under pitch motions," Energy, Elsevier, vol. 309(C).
    20. Yolanda Vidal & Leonardo Acho & Ignasi Cifre & Àlex Garcia & Francesc Pozo & José Rodellar, 2017. "Wind Turbine Synchronous Reset Pitch Control," Energies, MDPI, vol. 10(6), pages 1-16, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:897-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.