IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013983.html
   My bibliography  Save this article

Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning

Author

Listed:
  • Mazare, Mahmood

Abstract

As the utilization of wind energy continues to grow, it is crucial to prioritize the identification of vulnerabilities, raise awareness, and develop strategies for cybersecurity defense. False data injection (FDI) attacks, if targeted at the communication between the rotor speed sensor and the wind turbine (WT) controller, can potentially disrupt the normal operation of the system. These attacks have the capability to overload the drive-train and significantly reduce the power generation efficiency of the wind turbine. So, this note presents an adaptive optimal secure control strategy entailing reinforcement learning (RL) neural network (NN) using the filter error to compensate the detrimental effects of FDI attack as well as actuator fault for WT systems. The Hamilton–Jacobi–Bellman (HJB) equation is constructed and solved to obtain the optimal control policy. Since the HJB is inextricably intertwined with intrinsic nonlinearity and complexity, solving this equation is quiet challenging. To tackle this issue and also approximate the solution of the HJB, an actor–critic-based reinforcement learning (RL) strategy is used, in which actor and critic NNs are applied to execute control action and assess control performance, respectively. To detect FDI attack, an anomaly detection is developed using a nonlinear observer/estimator. Stability analysis is performed using Lyapunov theory which guarantees semi-global uniformly ultimately bounded (SGUUB) of the error signal. Finally, simulation results verify the effectiveness of the proposed control approach.

Suggested Citation

  • Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013983
    DOI: 10.1016/j.apenergy.2023.122034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.