IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p770-d100261.html
   My bibliography  Save this article

Wind Turbine Synchronous Reset Pitch Control

Author

Listed:
  • Yolanda Vidal

    (Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 6–12, 08930 San Adrià de Besòs, Spain
    These authors contributed equally to this work.)

  • Leonardo Acho

    (Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 6–12, 08930 San Adrià de Besòs, Spain
    These authors contributed equally to this work.)

  • Ignasi Cifre

    (Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 6–12, 08930 San Adrià de Besòs, Spain
    These authors contributed equally to this work.)

  • Àlex Garcia

    (Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 6–12, 08930 San Adrià de Besòs, Spain
    These authors contributed equally to this work.)

  • Francesc Pozo

    (Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 6–12, 08930 San Adrià de Besòs, Spain
    These authors contributed equally to this work.)

  • José Rodellar

    (Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 6–12, 08930 San Adrià de Besòs, Spain
    These authors contributed equally to this work.)

Abstract

Reset controllers are commonly used to smooth the transient response of systems. We use this technique to improve a standard baseline pitch controller for offshore wind turbines (WTs). The introduction of this strategy enhances the overall performance of the WT. In particular, the fore-aft and side-to-side accelerations of the WT tower are significantly reduced, whilst a steadier power output is obtained, in comparison to the standard baseline pitch controller. Furthermore, our designed pitch control’s main advantage, with respect to the baseline, is its ease of implementation and reduced complexity as it does not require a gain-scheduling technique, nor pitch position measurement (thus, it is insensitive to pitch sensor faults). The proposed approach has been simulated on the NREL 5-MW prototype offshore turbine model, mounted on a jacket support. The simulations are carried out using the aero-hydro-servo-elastic simulator FAST, and key observations are thoroughly discussed.

Suggested Citation

  • Yolanda Vidal & Leonardo Acho & Ignasi Cifre & Àlex Garcia & Francesc Pozo & José Rodellar, 2017. "Wind Turbine Synchronous Reset Pitch Control," Energies, MDPI, vol. 10(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:770-:d:100261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jay P. Goit & Wim Munters & Johan Meyers, 2016. "Optimal Coordinated Control of Power Extraction in LES of a Wind Farm with Entrance Effects," Energies, MDPI, vol. 9(1), pages 1-20, January.
    2. Oscar Barambones, 2012. "Sliding Mode Control Strategy for Wind Turbine Power Maximization," Energies, MDPI, vol. 5(7), pages 1-21, July.
    3. Yolanda Vidal & Christian Tutivén & José Rodellar & Leonardo Acho, 2015. "Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator," Energies, MDPI, vol. 8(5), pages 1-17, May.
    4. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    5. Civelek, Zafer & Lüy, Murat & Çam, Ertuğrul & Mamur, Hayati, 2017. "A new fuzzy logic proportional controller approach applied to individual pitch angle for wind turbine load mitigation," Renewable Energy, Elsevier, vol. 111(C), pages 708-717.
    6. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    7. Jie Tian & Dao Zhou & Chi Su & Mohsen Soltani & Zhe Chen & Frede Blaabjerg, 2017. "Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect," Energies, MDPI, vol. 10(3), pages 1-19, March.
    8. Soukissian, Takvor, 2013. "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution," Applied Energy, Elsevier, vol. 111(C), pages 982-1000.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramji Tiwari & Sanjeevikumar Padmanaban & Ramesh Babu Neelakandan, 2017. "Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    3. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
    4. Do, M. Hung & Söffker, Dirk, 2021. "State-of-the-art in integrated prognostics and health management control for utility-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    8. Tanvir Ahmad & Abdul Basit & Muneeb Ahsan & Olivier Coupiac & Nicolas Girard & Behzad Kazemtabrizi & Peter C. Matthews, 2019. "Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    9. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    10. Yu-Huei Cheng & Ching-Ming Lai, 2017. "Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm," Energies, MDPI, vol. 10(3), pages 1-21, March.
    11. Bofeng Xu & Yue Yuan & Haoming Liu & Peng Jiang & Ziqi Gao & Xiang Shen & Xin Cai, 2020. "A Pitch Angle Controller Based on Novel Fuzzy-PI Control for Wind Turbine Load Reduction," Energies, MDPI, vol. 13(22), pages 1-16, November.
    12. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    13. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    15. Jia, Junmei & Yan, Zaizai & Peng, Xiuyun & An, Xiaoyan, 2020. "A new distribution for modeling the wind speed data in Inner Mongolia of China," Renewable Energy, Elsevier, vol. 162(C), pages 1979-1991.
    16. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    17. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    18. Sung-Won Lee & Kwan-Ho Chun, 2019. "Adaptive Sliding Mode Control for PMSG Wind Turbine Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    19. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    20. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:770-:d:100261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.