IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp491-501.html
   My bibliography  Save this article

Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules

Author

Listed:
  • Chen, Wei
  • Chen, Wei

Abstract

A novel phase change heat storage for solar heating is proposed, where the phase change capsules (PCC) are piled up on the different sieve beds to form several porous heat storage layers, and the buoyancy force in solar chimney is utilized to drive the heating airflow in the system. Local thermal non-equilibrium (LTNE) is considered to be in the porous beds, so the heat transfer and flow in the porous thermal storage layer are analyzed based on the double energy equations and Brinkman-Forchheimer extended Darcy model, and the k-ε turbulent model combined with the above equations are also employed to study the effects of materials, porosity and particle size of PCC in the porous thermal storage as well as the characteristics of flow channel on the efficient of thermal storage. The simulations accord with the published experimental results. About 7%–25% higher thermal storage time occurs in the layer of PCC than that of Tuff and Basalt. The porosity and particle size in the porous layer have an impact on the thermal storage, and the better performance of thermal storage can be achieved at the optimized ratio of the width of flow channel to bed thickness in the system.

Suggested Citation

  • Chen, Wei & Chen, Wei, 2020. "Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules," Renewable Energy, Elsevier, vol. 157(C), pages 491-501.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:491-501
    DOI: 10.1016/j.renene.2020.04.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    2. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    3. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.
    4. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    5. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    6. Toghraie, Davood & Karami, Amir & Afrand, Masoud & Karimipour, Arash, 2018. "Effects of geometric parameters on the performance of solar chimney power plants," Energy, Elsevier, vol. 162(C), pages 1052-1061.
    7. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    8. Oró, Eduard & Barreneche, Camila & Farid, Mohammed M. & Cabeza, Luisa F., 2013. "Experimental study on the selection of phase change materials for low temperature applications," Renewable Energy, Elsevier, vol. 57(C), pages 130-136.
    9. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    10. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    11. Chen, Wei & Liu, Wei, 2004. "Numerical analysis of heat transfer in a composite wall solar-collector system with a porous absorber," Applied Energy, Elsevier, vol. 78(2), pages 137-149, June.
    12. Shen, Wenqing & Ming, Tingzhen & Ding, Yan & Wu, Yongjia & de_Richter, Renaud K., 2014. "Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind," Renewable Energy, Elsevier, vol. 68(C), pages 662-676.
    13. Hami, K. & Draoui, B. & Hami, O., 2012. "The thermal performances of a solar wall," Energy, Elsevier, vol. 39(1), pages 11-16.
    14. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    15. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    16. Lee, Duen-Sheng & Hung, Tzu-Chen & Lin, Jaw-Ren & Zhao, Jun, 2015. "Experimental investigations on solar chimney for optimal heat collection to be utilized in organic Rankine cycle," Applied Energy, Elsevier, vol. 154(C), pages 651-662.
    17. Verma, Prashant & Varun & Singal, S.K., 2008. "Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 999-1031, May.
    18. Chen, Wei & Zhang, Shuqiong & Zhang, Yunsong, 2018. "Analysis on the cooling and soaking-up performance of wet porous wall for building," Renewable Energy, Elsevier, vol. 115(C), pages 1249-1259.
    19. Kalaiselvam, S. & Parameshwaran, R. & Harikrishnan, S., 2012. "Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings," Renewable Energy, Elsevier, vol. 39(1), pages 375-387.
    20. Chen, Wei & Qu, Man, 2014. "Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber," Renewable Energy, Elsevier, vol. 63(C), pages 511-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    2. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    3. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    4. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    6. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    7. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    8. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    9. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    12. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    13. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    14. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    16. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    17. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    18. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    19. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    20. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:491-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.