IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp296-308.html
   My bibliography  Save this article

Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface

Author

Listed:
  • Wollz, Danilo Henrique
  • da Silva, Sergio Augusto Oliveira
  • Sampaio, Leonardo Poltronieri

Abstract

This paper proposes an electronic wind turbine emulator (EWTEm) platform involving the dynamic models of the wind turbine (WT), permanent magnet synchronous generator (PMSG), and turbine-generator mechanical coupling, such that a real WT can be emulated for distinct kinds of loads and wind profiles. Low implementation cost represents an advantage for the proposed EWTEm, followed by its versatility on the commercial WT emulation with different characteristics, enabling the development of both theoretical and practical laboratory researches. Besides the 3-Phase 3-Leg inverter, the system is composed of a controlled rectifier with a high power factor and a graphical interface. Thus, it is possible to perform the following tasks: 1) vary the wind speed or wind profile; 2) visualize and assess the dynamic and static performances of the EWTEm by measuring the inverter quantities, such as voltages, currents, electric power, and frequency of the PMSG; and 3) visualize the quantities that are calculated into the digital signal controller, such as WT mechanical power, electromagnetic torque and rotation speed at the PMSG shaft. Simulation results are presented, as well as experimental tests are carried out and visualized by a graphical interface considering the system subjected to several transients of load and wind speed.

Suggested Citation

  • Wollz, Danilo Henrique & da Silva, Sergio Augusto Oliveira & Sampaio, Leonardo Poltronieri, 2020. "Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface," Renewable Energy, Elsevier, vol. 155(C), pages 296-308.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:296-308
    DOI: 10.1016/j.renene.2020.03.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    4. Sajadi, Amirhossein & Rosłaniec, Łukasz & Kłos, Mariusz & Biczel, Piotr & Loparo, Kenneth A., 2016. "An emulator for fixed pitch wind turbine studies," Renewable Energy, Elsevier, vol. 87(P1), pages 391-402.
    5. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    6. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    7. Martinez, Fernando & Herrero, L. Carlos & de Pablo, Santiago, 2014. "Open loop wind turbine emulator," Renewable Energy, Elsevier, vol. 63(C), pages 212-221.
    8. Yan, Jianhu & Feng, Yi & Dong, Jianning, 2016. "Study on dynamic characteristic of wind turbine emulator based on PMSM," Renewable Energy, Elsevier, vol. 97(C), pages 731-736.
    9. Yao, Jun & Pei, Jinxin & Xu, Depeng & Liu, Ruikuo & Wang, Xuewei & Wang, Caisheng & Li, Yu, 2018. "Coordinated control of a hybrid wind farm with DFIG-based and PMSG-based wind power generation systems under asymmetrical grid faults," Renewable Energy, Elsevier, vol. 127(C), pages 613-629.
    10. Ajami, Ali & Alizadeh, Rana & Elmi, Mahdi, 2016. "Design and control of a grid tied 6-switch converter for two independent low power wind energy resources based on PMSGs with MPPT capability," Renewable Energy, Elsevier, vol. 87(P1), pages 532-543.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onofre A. Morfin & Riemann Ruiz-Cruz & Jesus I. Hernández & Carlos E. Castañeda & Reymundo Ramírez-Betancour & Fredy A. Valenzuela-Murillo, 2021. "Real-Time Sensorless Robust Velocity Controller Applied to a DC-Motor for Emulating a Wind Turbine," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. K. Premkumar & M. Vishnupriya & Thanikanti Sudhakar Babu & B. V. Manikandan & T. Thamizhselvan & A. Nazar Ali & Md. Rabiul Islam & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2020. "Black Widow Optimization-Based Optimal PI-Controlled Wind Turbine Emulator," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    3. Anderson Aparecido Dionizio & Leonardo Poltronieri Sampaio & Sérgio Augusto Oliveira da Silva & Sebastián de Jesús Manrique Machado, 2023. "Grid-Tied Single-Phase Integrated Zeta Inverter for Photovoltaic Applications," Energies, MDPI, vol. 16(9), pages 1-19, April.
    4. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zouheyr, Dekali & Lotfi, Baghli & Abdelmadjid, Boumediene, 2021. "Improved hardware implementation of a TSR based MPPT algorithm for a low cost connected wind turbine emulator under unbalanced wind speeds," Energy, Elsevier, vol. 232(C).
    2. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    4. González-Hernández, José Genaro & Salas-Cabrera, Rubén & Vázquez-Bautista, Roberto & Ong-de-la-Cruz, Luis Manuel & Rodríguez-Guillén, Joel, 2021. "A novel MPPT PI discrete reverse-acting controller for a wind energy conversion system," Renewable Energy, Elsevier, vol. 178(C), pages 904-915.
    5. José Genaro González-Hernández & Rubén Salas-Cabrera, 2021. "Wind Power Extraction Optimization by Dynamic Gain Scheduling Approximation Based on Non-Linear Functions for a WECS Based on a PMSG," Mathematics, MDPI, vol. 9(17), pages 1-19, August.
    6. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    7. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    8. Ahmed G. Abo-Khalil & Saeed Alyami & Khairy Sayed & Ayman Alhejji, 2019. "Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions," Energies, MDPI, vol. 12(10), pages 1-25, May.
    9. Yan, Cai & Yao, Wei & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Optimal design of probabilistic robust damping controllers to suppress multiband oscillations of power systems integrated with wind farm," Renewable Energy, Elsevier, vol. 158(C), pages 75-90.
    10. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    11. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    12. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    13. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    14. Castelló, Jaime & Espí, José M. & García-Gil, Rafael, 2016. "Development details and performance assessment of a Wind Turbine Emulator," Renewable Energy, Elsevier, vol. 86(C), pages 848-857.
    15. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    16. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    17. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    18. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    19. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    20. Anto Anbarasu Yesudhas & Young Hoon Joo & Seong Ryong Lee, 2022. "Reference Model Adaptive Control Scheme on PMVG-Based WECS for MPPT under a Real Wind Speed," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:296-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.