IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221012871.html
   My bibliography  Save this article

Improved hardware implementation of a TSR based MPPT algorithm for a low cost connected wind turbine emulator under unbalanced wind speeds

Author

Listed:
  • Zouheyr, Dekali
  • Lotfi, Baghli
  • Abdelmadjid, Boumediene

Abstract

This paper presents the design, modeling, and the experimental build of a 1.5 kW relatively low-cost wind turbine emulator (WTE), based on the variable speed wind power system concept with partly rated power converters. The turbine simulator is composed of a controlled DC motor (DCM) in order to manage the static-dynamic behavior of a real wind turbine, including an ideal gearbox. This emulator is integrated into a connected wind energy conversion system chain (WECS), based on the double fed induction generator (DFIG) configuration. The latter ensures the electromechanical conversion. It allows the transfer of active and reactive power to the power grid during hypo and hyper synchronous modes. The aerodynamic emulation principle requires controlling the DC armature current with a PI controller. This leads to an electrical drive that applies a shaft torque identical to the wind turbine transmission drive train. The current reference is calculated as function of the static settings of the wind turbine and real wind speed data gives different operating points. In addition, this paper also proposes to test the TSR (Tip Speed Ratio) based MPPT algorithm to extract the maximum available power on the emulator by adjusting the rotational speed according to the actual given wind speed data. The MPPT, the DC motor control and the DFIG power control algorithms are implanted in C language, using dSPACE DS1104 control board, meanwhile simulations are done using MATLAB/Simulink. The experimental and simulation results show the effectiveness of using the controlled DC motor to emulate the wind turbine and also the great performances of the proposed MPPT structure to achieve the extraction of the maximum instantaneous power available on the drive shaft.

Suggested Citation

  • Zouheyr, Dekali & Lotfi, Baghli & Abdelmadjid, Boumediene, 2021. "Improved hardware implementation of a TSR based MPPT algorithm for a low cost connected wind turbine emulator under unbalanced wind speeds," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012871
    DOI: 10.1016/j.energy.2021.121039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Barambones, Oscar & Cortajarena, Jose A. & Calvo, Isidro & Gonzalez de Durana, Jose M. & Alkorta, Patxi & Karami-Mollaee, A., 2019. "Variable speed wind turbine control scheme using a robust wind torque estimation," Renewable Energy, Elsevier, vol. 133(C), pages 354-366.
    4. Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
    5. Pan, Lin & Shao, Chengpeng, 2020. "Wind energy conversion systems analysis of PMSG on offshore wind turbine using improved SMC and Extended State Observer," Renewable Energy, Elsevier, vol. 161(C), pages 149-161.
    6. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).
    7. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    8. Sajadi, Amirhossein & Rosłaniec, Łukasz & Kłos, Mariusz & Biczel, Piotr & Loparo, Kenneth A., 2016. "An emulator for fixed pitch wind turbine studies," Renewable Energy, Elsevier, vol. 87(P1), pages 391-402.
    9. Martinez, Fernando & Herrero, L. Carlos & de Pablo, Santiago, 2014. "Open loop wind turbine emulator," Renewable Energy, Elsevier, vol. 63(C), pages 212-221.
    10. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.
    11. Hu, Lu & Xue, Fei & Qin, Zijian & Shi, Jiying & Qiao, Wen & Yang, Wenjing & Yang, Ting, 2019. "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system," Applied Energy, Elsevier, vol. 248(C), pages 567-575.
    12. Lim, Chae Wook, 2019. "A demonstration on the similarity of pitch response between MW wind turbine and small-scale simulator," Renewable Energy, Elsevier, vol. 144(C), pages 68-76.
    13. Ardjal, Aghiles & Merabet, Adel & Bettayeb, Maamar & Mansouri, Rachid & Labib, Labib, 2019. "Design and implementation of a fractional nonlinear synergetic controller for generator and grid converters of wind energy conversion system," Energy, Elsevier, vol. 186(C).
    14. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    2. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wollz, Danilo Henrique & da Silva, Sergio Augusto Oliveira & Sampaio, Leonardo Poltronieri, 2020. "Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface," Renewable Energy, Elsevier, vol. 155(C), pages 296-308.
    2. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    3. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    4. González-Hernández, José Genaro & Salas-Cabrera, Rubén & Vázquez-Bautista, Roberto & Ong-de-la-Cruz, Luis Manuel & Rodríguez-Guillén, Joel, 2021. "A novel MPPT PI discrete reverse-acting controller for a wind energy conversion system," Renewable Energy, Elsevier, vol. 178(C), pages 904-915.
    5. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    8. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    9. Ahmed G. Abo-Khalil & Saeed Alyami & Khairy Sayed & Ayman Alhejji, 2019. "Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions," Energies, MDPI, vol. 12(10), pages 1-25, May.
    10. José Genaro González-Hernández & Rubén Salas-Cabrera, 2021. "Wind Power Extraction Optimization by Dynamic Gain Scheduling Approximation Based on Non-Linear Functions for a WECS Based on a PMSG," Mathematics, MDPI, vol. 9(17), pages 1-19, August.
    11. Yan, Cai & Yao, Wei & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Optimal design of probabilistic robust damping controllers to suppress multiband oscillations of power systems integrated with wind farm," Renewable Energy, Elsevier, vol. 158(C), pages 75-90.
    12. Hui Liu & Peng Wang & Teyang Zhao & Zhenggang Fan & Houlin Pan, 2022. "A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms," Energies, MDPI, vol. 15(8), pages 1-23, April.
    13. Agha Kashkooli, M.R. & Jovanović, Milutin G., 2021. "Sensorless adaptive control of brushless doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 177(C), pages 932-941.
    14. José Genaro González-Hernández & Rubén Salas-Cabrera, 2022. "Duty Cycle-Rotor Angular Speed Reverse Acting Relationship Steady State Analysis Based on a PMSG d–q Transform Modeling," Mathematics, MDPI, vol. 10(5), pages 1-17, February.
    15. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    18. Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
    19. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    20. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.