IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp385-393.html

Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates

Author

Listed:
  • Feng, Kai
  • Wang, Qiao
  • Li, Huan
  • Zhang, Yangyang
  • Deng, Zhou
  • Liu, Jianguo
  • Du, Xinrui

Abstract

In two-phase anaerobic digestion (TPAD) of food waste, alkaline addition is commonly used to alter fermentation types aiming to improve the subsequent methanogenesis. However, alkaline usage could also cause the accumulation of salt and inhibit methanogens. To discover the opposite effect, a series of continuous TPAD experiments with automatic pH control were conducted at different organic load rates (OLRs). The results indicated that pH regulation was not always effective for TPAD. At the OLR of 1.9 g/(L·d), mixed acid fermentation at pH 6.0 and lactic acid fermentation at pH 4.5 were achieved with the average NaOH dose of 1.69 and 2.45 g/(L·d), respectively, and the subsequent methane production increased to 460 and 482 ml/g in comparison to 380 ml/g in single-phase anaerobic digestion (SPAD). At the OLR of 2.4 g/(L·d), the Na+ concentration in methanogenic phase increased more than 3.5 g/L, resulting in the deterioration of methane production. At the OLRs higher than 3.2 g/(L·d), pH control cannot be applied to TPAD, and SPAD suffered from excessive acidification. Thus, TPAD without pH control became the only choice, but its methane yield was only 397 ml/g, implying new methods should be considered to improve TPAD.

Suggested Citation

  • Feng, Kai & Wang, Qiao & Li, Huan & Zhang, Yangyang & Deng, Zhou & Liu, Jianguo & Du, Xinrui, 2020. "Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates," Renewable Energy, Elsevier, vol. 154(C), pages 385-393.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:385-393
    DOI: 10.1016/j.renene.2020.03.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Schievano, A. & Tenca, A. & Lonati, S. & Manzini, E. & Adani, F., 2014. "Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?," Applied Energy, Elsevier, vol. 124(C), pages 335-342.
    2. McEniry, J. & Allen, E. & Murphy, J.D. & O'Kiely, P., 2014. "Grass for biogas production: The impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems," Renewable Energy, Elsevier, vol. 63(C), pages 524-530.
    3. Li, Wangliang & Loh, Kai-Chee & Zhang, Jingxin & Tong, Yen Wah & Dai, Yanjun, 2018. "Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system," Applied Energy, Elsevier, vol. 209(C), pages 400-408.
    4. Feng, Kai & Li, Huan & Deng, Zhou & Wang, Qiao & Zhang, Yangyang & Zheng, Chengzhi, 2020. "Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste," Renewable Energy, Elsevier, vol. 146(C), pages 1588-1595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.
    2. Mondal, Sourav & Neogi, Swati & Chakraborty, Saikat, 2024. "Optimization of reactor parameters for amplifying synergy in enzymatic co-hydrolysis and microbial co-fermentation of lignocellulosic agro-residues," Renewable Energy, Elsevier, vol. 225(C).
    3. Panigrahi, Sagarika & Sharma, Hari Bhakta & Tiwari, Bikash Ranjan & Krishna, Nakka Vamsi & Ghangrekar, M.M. & Dubey, Brajesh Kumar, 2021. "Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste," Renewable Energy, Elsevier, vol. 180(C), pages 1166-1178.
    4. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    5. Pugazhendhi, Arivalagan & Sharma, Ashutosh, 2025. "A detailed survey of recyclable food discards for the production of alternative fuels – Present and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    6. Chen, Minzi & Zhang, Shuping & Su, Yinhai & Niu, Xin & Zhu, Shuguang & Liu, Xinzhi, 2022. "Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil," Renewable Energy, Elsevier, vol. 186(C), pages 105-114.
    7. Zhang, Yangyang & Li, Huan & Li, Debin, 2021. "Maximize methane recovery from sludge anaerobic digestion by combining an optimal wet air oxidation process," Renewable Energy, Elsevier, vol. 179(C), pages 359-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. VAN Vlierberghe, C. & Carrere, H. & Bernet, N. & Santa-Catalina, G. & Frederic, S. & Escudie, R., 2022. "Co-ensiling and field wilting investigated as preparation methods for the ensiling of a wet harvested catch crop for biomethane production," Renewable Energy, Elsevier, vol. 195(C), pages 1230-1237.
    3. Li, Wangliang & Loh, Kai-Chee & Zhang, Jingxin & Tong, Yen Wah & Dai, Yanjun, 2018. "Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system," Applied Energy, Elsevier, vol. 209(C), pages 400-408.
    4. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    5. Gandhi, Bhushan P. & Otite, Saanu Victoria & Fofie, Esther A. & Lag-Brotons, Alfonso José & Ezemonye, Lawrence I. & Semple, Kirk T. & Martin, Alastair D., 2022. "Kinetic investigations into the effect of inoculum to substrate ratio on batch anaerobic digestion of simulated food waste," Renewable Energy, Elsevier, vol. 195(C), pages 311-321.
    6. Tang, Shuai & Wang, Zixin & Lu, Haifeng & Si, Buchun & Wang, Chaoyuan & Jiang, Weizhong, 2023. "Design of stage-separated anaerobic digestion: Principles, applications, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Suriyan Boonpiyo & Sureewan Sittijunda & Alissara Reungsang, 2018. "Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production," Energies, MDPI, vol. 11(11), pages 1-13, November.
    8. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    9. Himanshu, H. & Murphy, J.D. & Grant, J. & O'Kiely, P., 2018. "Synergies from co-digesting grass or clover silages with cattle slurry in in vitro batch anaerobic digestion," Renewable Energy, Elsevier, vol. 127(C), pages 474-480.
    10. Shweta Mitra & Prasad Kaparaju, 2024. "Feasibility of Food Organics and Garden Organics as a Promising Source of Biomethane: A Review on Process Optimisation and Impact of Nanomaterials," Energies, MDPI, vol. 17(16), pages 1-39, August.
    11. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Feng, Kai & Li, Huan & Deng, Zhou & Wang, Qiao & Zhang, Yangyang & Zheng, Chengzhi, 2020. "Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste," Renewable Energy, Elsevier, vol. 146(C), pages 1588-1595.
    14. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    15. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Mohammad Al-Addous & Motasem N. Saidan & Mathhar Bdour & Mohammad Alnaief, 2018. "Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System," Energies, MDPI, vol. 12(1), pages 1-11, December.
    17. Villa, Raffaella & Ortega Rodriguez, Lelia & Fenech, Cecilia & Anika, Ogemdi Chinwendu, 2020. "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Lin, Chiu-Yue & Nguyen, Thi Mai-Linh & Chu, Chen-Yeon & Leu, Hoang-Jyh & Lay, Chyi-How, 2018. "Fermentative biohydrogen production and its byproducts: A mini review of current technology developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4215-4220.
    19. Trchounian, Karen & Poladyan, Anna & Trchounian, Armen, 2016. "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Applied Energy, Elsevier, vol. 177(C), pages 335-340.
    20. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:385-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.