IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp298-320.html
   My bibliography  Save this article

Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity

Author

Listed:
  • Zhu, Di
  • Tao, Ran
  • Xiao, Ruofu
  • Pan, Litan

Abstract

Runner blade crack is a problem that affects the operation security of hydro-turbines. In this study, penetrating cracks were found by inspection on the runner blade of a Francis turbine near hub and shroud on trailing-edge. To solve this problem, prototype test was conducted to find the conditions under strong hydraulic instabilities. The turbine vibration region was classified based on the test and found mainly at small guide vane opening angles or low-head high-load conditions. In these regions, vibration was strong and the numerical-predicted flow regime was disordered. Analyzed by fluid-solid interaction method, stress concentrations were found on the blade-hub and blade-shroud connections on trailing-edge. By excluding the influence of resonance, the runner blade crack problem was found as the combination of concentrating static stress, hydraulic excited pulsating stress and residual stress. Triangle-blocks, which were helpful for eliminating the concentrating static stress, were welded on the blades after cutting-off the old crack sites. Polishing and buffing were conducted for reducing potential residual stress. After a long-time re-operation, the improved runner was found without runner blade cracks. Prototype re-testing showed no impacts on the efficiency. This study provided a good solution for the Francis turbine runner blade crack problem under condition-complexity.

Suggested Citation

  • Zhu, Di & Tao, Ran & Xiao, Ruofu & Pan, Litan, 2020. "Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity," Renewable Energy, Elsevier, vol. 149(C), pages 298-320.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:298-320
    DOI: 10.1016/j.renene.2019.12.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2018. "Cavitation behavior study in the pump mode of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 125(C), pages 655-667.
    2. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
    3. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    4. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    5. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    6. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    7. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    8. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    9. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    10. Choi, Hyen-Jun & Zullah, Mohammed Asid & Roh, Hyoung-Woon & Ha, Pil-Su & Oh, Sueg-Young & Lee, Young-Ho, 2013. "CFD validation of performance improvement of a 500 kW Francis turbine," Renewable Energy, Elsevier, vol. 54(C), pages 111-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    2. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    3. Liu, Fuxiu & Li, Zhaojun & Liang, Minglang & Zhao, Binjian & Ding, Jiang, 2023. "Prediction method of non-stationary random vibration fatigue reliability of turbine runner blade based on transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Xing Zhou & Changzheng Shi & Kazuyoshi Miyagawa & Hegao Wu & Jinhong Yu & Zhu Ma, 2020. "Investigation of Pressure Fluctuation and Pulsating Hydraulic Axial Thrust in Francis Turbines," Energies, MDPI, vol. 13(7), pages 1-16, April.
    5. Li, Lin & Tan, Dapeng & Yin, Zichao & Wang, Tong & Fan, Xinghua & Wang, Ronghui, 2021. "Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production," Renewable Energy, Elsevier, vol. 175(C), pages 887-909.
    6. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    7. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
    2. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    3. Zhu, Di & Xiao, Ruofu & Liu, Weichao, 2021. "Influence of leading-edge cavitation on impeller blade axial force in the pump mode of reversible pump-turbine," Renewable Energy, Elsevier, vol. 163(C), pages 939-949.
    4. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    5. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    7. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    8. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    9. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    10. Zhang, Hao & Guo, Pengcheng & Sun, Longgang, 2020. "Transient analysis of a multi-unit pumped storage system during load rejection process," Renewable Energy, Elsevier, vol. 152(C), pages 34-43.
    11. Md Rakibuzzaman & Hyoung-Ho Kim & Kyungwuk Kim & Sang-Ho Suh & Kyung Yup Kim, 2019. "Numerical Study of Sediment Erosion Analysis in Francis Turbine," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    12. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    13. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    14. Lucie Zemanová & Pavel Rudolf, 2020. "Flow Inside the Sidewall Gaps of Hydraulic Machines: A Review," Energies, MDPI, vol. 13(24), pages 1-37, December.
    15. Yongsheng Liu & Chengming Liu & Yongsheng Zhang & Xingxing Huang & Tao Guo & Lingjiu Zhou & Zhengwei Wang, 2023. "Influence of Axial Installation Deviation on the Hydraulic Axial Force of the 1000 MW Francis Runner in the Rated Operating Condition," Energies, MDPI, vol. 16(4), pages 1-20, February.
    16. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    17. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    18. Deyou, Li & Hongjie, Wang & Gaoming, Xiang & Ruzhi, Gong & Xianzhu, Wei & Zhansheng, Liu, 2015. "Unsteady simulation and analysis for hump characteristics of a pump turbine model," Renewable Energy, Elsevier, vol. 77(C), pages 32-42.
    19. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    20. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:298-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.