IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp284-297.html
   My bibliography  Save this article

Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high-temperature geothermal resources

Author

Listed:
  • Zhang, Chao
  • Hu, Shengbiao
  • Zhang, Shengsheng
  • Li, Shengtao
  • Zhang, Linyou
  • Kong, Yanlong
  • Zuo, Yinhui
  • Song, Rongcai
  • Jiang, Guangzheng
  • Wang, Zhuting

Abstract

Hot dry rock is an almost inexhaustible source of geothermal energy. Since the first attempt to extract thermal energy from hot dry rock in America in the 1970s, successive studies have been conducted in many countries. Recently, high-temperature rock (exceeding 180 °C) was drilled in the Gonghe basin, northeastern Tibetan Plateau, marking a significant breakthrough in the exploration of hot dry rock resources in China. A proper understanding of the origin of the hot dry rock in the Gonghe basin is essential to the evaluation of the geothermal resource potential and to the establishment of an enhanced geothermal system in the basin.

Suggested Citation

  • Zhang, Chao & Hu, Shengbiao & Zhang, Shengsheng & Li, Shengtao & Zhang, Linyou & Kong, Yanlong & Zuo, Yinhui & Song, Rongcai & Jiang, Guangzheng & Wang, Zhuting, 2020. "Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high-temperature geothermal resources," Renewable Energy, Elsevier, vol. 148(C), pages 284-297.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:284-297
    DOI: 10.1016/j.renene.2019.11.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    2. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    3. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianwei Zhao & Zhaofa Zeng & Shuai Zhou & Jiahe Yan & Baizhou An, 2023. "3-D Inversion of Gravity Data of the Central and Eastern Gonghe Basin for Geothermal Exploration," Energies, MDPI, vol. 16(5), pages 1-16, February.
    2. Guilin Zhu & Linyou Zhang & Zhihui Deng & Qingda Feng & Zhaoxuan Niu & Wenhao Xu, 2023. "Three-Dimensional Geological Modeling and Resource Estimation of Hot Dry Rock in the Gonghe Basin, Qinghai Province," Energies, MDPI, vol. 16(16), pages 1-16, August.
    3. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    2. Cao, Wenjiong & Huang, Wenbo & Chen, Juanwen & Li, Zhibin & Jiang, Fangming, 2023. "Numerical study on the heat extraction performance of enhanced geothermal systems with a well-fracture-reservoir combined model," Renewable Energy, Elsevier, vol. 202(C), pages 370-380.
    3. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    4. Guilin Zhu & Linyou Zhang & Zhihui Deng & Qingda Feng & Zhaoxuan Niu & Wenhao Xu, 2023. "Three-Dimensional Geological Modeling and Resource Estimation of Hot Dry Rock in the Gonghe Basin, Qinghai Province," Energies, MDPI, vol. 16(16), pages 1-16, August.
    5. Kang, Fangchao & Li, Yingchun & Tang, Chun'an & Huang, Xin & Li, Tianjiao, 2022. "Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 704-716.
    6. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    7. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    8. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    9. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    10. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    11. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    12. Guo, Liang-Liang & Zhang, Yong-Bo & Wang, Zhi-Chao & Zeng, Jian & Zhang, Yan-Jun & Zhang, Zhi-Xiang, 2020. "Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 813-831.
    13. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    14. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    15. Feng, Guanhong & Xu, Tianfu & Zhao, Yue'an & Gherardi, Fabrizio, 2022. "Heat mining from super-hot horizons of the Larderello geothermal field, Italy," Renewable Energy, Elsevier, vol. 197(C), pages 371-383.
    16. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    17. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    18. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    19. Wang, Guiling & Liu, Guihong & Zhao, Zhihong & Liu, Yanguang & Pu, Hai, 2019. "A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model," Renewable Energy, Elsevier, vol. 139(C), pages 873-894.
    20. Tailu Li & Xuelong Li & Haiyang Gao & Xiang Gao & Nan Meng, 2022. "Thermodynamic Performance of Geothermal Energy Cascade Utilization for Combined Heating and Power Based on Organic Rankine Cycle and Vapor Compression Cycle," Energies, MDPI, vol. 15(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:284-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.