IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3424-d1633020.html
   My bibliography  Save this article

Geothermal Genesis Mechanism of the Yinchuan Basin Based on Thermal Parameter Inversion

Author

Listed:
  • Baizhou An

    (Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100000, China
    Geophysical Geochemical Survey Institute of Ningxia Hui Autonomous Region (Deep Earth Exploration Center of Ningxia Autonomous Region), Yinchuan 750001, China)

  • Lige Bai

    (College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China)

  • Jianwei Zhao

    (College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China)

  • Zhaofa Zeng

    (College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China)

Abstract

The Yinchuan Basin harbors significant geothermal resource potential and could be a clean energy source critical for transitioning to a low-carbon economy. However, the current research primarily focuses on the exploration and development of geothermal water in the sedimentary basins, with limited studies on the deep geothermal formation mechanisms and regional geothermal types. Although geophysical methods provide insights into the types and formation mechanisms of deep geothermal resources in the basin, there is still a lack of a connection between quantitative understanding and direct evidence. A series of algorithms based on thermal parameter characteristics can directly extract underground thermal features from raw geophysical signal data, offering a powerful tool for characterizing the structure and aggregation patterns of deep thermal sources. Therefore, this study employed a Bayesian thermal parameter inversion method based on interface information to obtain the spatial distribution of thermal conductivity, surface heat flow, and mantle heat parameters in the Ningxia Basin study area. Additionally, correlation analysis and global sensitivity analysis were conducted to further interpret the predicted results. A comprehensive analysis of the geophysical inversion results showed that the deep thermal anomalies in the basin are primarily controlled by fault activities and the lithospheres’ thermal structure, while shallow high-heat flow anomalies are closely related to convective circulation within faults and heat transfer from deep thermal sources. The established geothermal genesis mechanism and model of the Yinchuan Basin provide crucial support for sustainable regional geothermal development planning and the utilization of deep geothermal resources, contributing to energy security and emission reduction goals.

Suggested Citation

  • Baizhou An & Lige Bai & Jianwei Zhao & Zhaofa Zeng, 2025. "Geothermal Genesis Mechanism of the Yinchuan Basin Based on Thermal Parameter Inversion," Sustainability, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3424-:d:1633020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Chao & Hu, Shengbiao & Zhang, Shengsheng & Li, Shengtao & Zhang, Linyou & Kong, Yanlong & Zuo, Yinhui & Song, Rongcai & Jiang, Guangzheng & Wang, Zhuting, 2020. "Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high-temperature geothermal resources," Renewable Energy, Elsevier, vol. 148(C), pages 284-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanyan & Guan, Hui & Pan, Sheng & Zhao, Ping & Zhao, Xiaoyun & Zhao, Haihua & Nan, Dawa & Dawa, Puchi & Liu, Xiaoming & Dor, Ji, 2025. "Discovery and genesis of high-temperature geothermal energy adjacent to the South Tibetan Detachment System, central Himalaya," Renewable Energy, Elsevier, vol. 238(C).
    2. Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
    3. Guilin Zhu & Linyou Zhang & Zhihui Deng & Qingda Feng & Zhaoxuan Niu & Wenhao Xu, 2023. "Three-Dimensional Geological Modeling and Resource Estimation of Hot Dry Rock in the Gonghe Basin, Qinghai Province," Energies, MDPI, vol. 16(16), pages 1-16, August.
    4. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).
    5. Jianwei Zhao & Zhaofa Zeng & Shuai Zhou & Jiahe Yan & Baizhou An, 2023. "3-D Inversion of Gravity Data of the Central and Eastern Gonghe Basin for Geothermal Exploration," Energies, MDPI, vol. 16(5), pages 1-16, February.
    6. Shu, Biao & Chen, Junjie & Xue, Hui, 2024. "Experimental study of the change of pore structure and strength of granite after fluid-rock interaction in CO2-EGS," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3424-:d:1633020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.