IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1199-1208.html
   My bibliography  Save this article

Investigation of the correlation mechanism between cavitation rope behavior and pressure fluctuations in a hydraulic turbine

Author

Listed:
  • Yu, An
  • Zou, Zhipeng
  • Zhou, Daqing
  • Zheng, Yuan
  • Luo, Xianwu

Abstract

Vortex ropes occurred in the draft tube when hydraulic turbines operating at off-design conditions, which can generate pressure fluctuations. Cavitation vortex rope is one of the most harmful factors to the safety of hydroturbines which may induce further pressure fluctuations. A study of the multiphase flow in a model turbine is presented in this paper using the software ANSYS CFX. The main emphasis is spending on understanding the mechanism of cavitation evolution and underlying its correlation mechanism with flow instabilities. The results indicate that two types of pressure variations can be captured with a cavitation rope: 1) The type due to the vortex rope rotating whose frequency is 1/5–1/4 times runner rotating frequency; 2) The type due to cavitation volume surge, whose frequency is less than that of vortex rope rotating. The frequency of pressure fluctuation due to cavitation keep contanst as the cavitation number decreases, while the amplitude much increases. While the frequency and amplitude of the pressure variation caused by votex rope rotating increase a little. Based on vorticity transport equation, the vortex and cavitation have a close relation. Cavitation increases the vortex production as well as the pressure fluctuation frequency caused by the rotation of vortex rope.

Suggested Citation

  • Yu, An & Zou, Zhipeng & Zhou, Daqing & Zheng, Yuan & Luo, Xianwu, 2020. "Investigation of the correlation mechanism between cavitation rope behavior and pressure fluctuations in a hydraulic turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1199-1208.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1199-1208
    DOI: 10.1016/j.renene.2019.09.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Pardeep & Saini, R.P., 2010. "Study of cavitation in hydro turbines--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 374-383, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, An & Li, Longwei & Ji, Jingjing & Tang, Qinghong, 2022. "Numerical study on the energy evaluation characteristics in a pump turbine based on the thermodynamic entropy theory," Renewable Energy, Elsevier, vol. 195(C), pages 766-779.
    2. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    3. Gongcheng Liu & Xudi Qiu & Jiayi Ma & Diyi Chen & Xiao Liang, 2022. "Influence of Flexible Generation Mode on the Stability of Hydropower Generation System: Stability Assessment of Part-Load Operation," Energies, MDPI, vol. 15(11), pages 1-19, May.
    4. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    5. Ye, Weixiang & Ikuta, Akihiro & Chen, Yining & Miyagawa, Kazuyoshi & Luo, Xianwu, 2020. "Numerical simulation on role of the rotating stall on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model," Renewable Energy, Elsevier, vol. 166(C), pages 91-107.
    6. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    7. Zhou, Xing & Shi, Changzheng & Miyagawa, Kazuyoshi & Wu, Hegao, 2021. "Effect of modified draft tube with inclined conical diffuser on flow instabilities in Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 606-617.
    8. Zhang, Mengjie & Liu, Taotao & Huang, Biao & Wu, Qin & Wang, Guoyu, 2020. "Hydrodynamic characteristics and flow structures of pitching hydrofoil with special emphasis on the added force effect," Renewable Energy, Elsevier, vol. 157(C), pages 560-573.
    9. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    10. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Weisheng & Xiang, Qiujie & Li, Yaojun & Liu, Zhuqing, 2023. "On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows," Energy, Elsevier, vol. 269(C).
    2. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Tang, Qinghong & Yu, An & Wang, Yongshuai & Tang, Yibo & Wang, Yifu, 2023. "Numerical analysis of vorticity transport and energy dissipation of inner-blade vortex in Francis turbine," Renewable Energy, Elsevier, vol. 203(C), pages 634-648.
    4. Teran, Leonel Alveyro & Larrahondo, Francisco Jose & Rodríguez, Sara Aida, 2016. "Performance improvement of a 500-kW Francis turbine based on CFD," Renewable Energy, Elsevier, vol. 96(PA), pages 977-992.
    5. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2023. "Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine," Applied Energy, Elsevier, vol. 330(PB).
    6. Lin, Tzu-Yuan & Ko, Chia-Yu & Chen, Shih-Jhe & Tsai, Guo Chung & Tsai, Hsieh-Chen, 2022. "A novel total-flow geothermal power generator using Turgo turbine: Design and field tests," Renewable Energy, Elsevier, vol. 186(C), pages 562-572.
    7. Liu, Xin & Luo, Yongyao & Karney, Bryan W. & Wang, Weizheng, 2015. "A selected literature review of efficiency improvements in hydraulic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 18-28.
    8. Zhang, Yao & Najafi, Mohammad Javid & Beni, Mohsen Heydari & Davar, Ali & Toghraie, Davood & Shafiee, Behzad Mojarad & Jam, Jafar Eskandari & Hekmatifar, Maboud, 2022. "The effects of geometric shapes at different assembly gaps to achieve the optimal hydrodynamic conditions," Renewable Energy, Elsevier, vol. 184(C), pages 452-459.
    9. Peng Song & Jinju Sun, 2019. "Cryogenic Cavitation Mitigation in a Liquid Turbine Expander of an Air-Separation Unit through Collaborative Fine-Tuned Optimization of Impeller and Fairing Cone Geometries," Energies, MDPI, vol. 13(1), pages 1-21, December.
    10. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    11. Laouari, Ahmed & Ghenaiet, Adel, 2021. "Investigation of steady and unsteady cavitating flows through a small Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 841-861.
    12. Fu, Tao & Deng, Zhiqun Daniel & Duncan, Joanne P. & Zhou, Daqing & Carlson, Thomas J. & Johnson, Gary E. & Hou, Hongfei, 2016. "Assessing hydraulic conditions through Francis turbines using an autonomous sensor device," Renewable Energy, Elsevier, vol. 99(C), pages 1244-1252.
    13. K., Subramanya & Chelliah, Thanga Raj, 2023. "Capability of synchronous and asynchronous hydropower generating systems: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    15. Zhang, Yuning & Liu, Kaihua & Xian, Haizhen & Du, Xiaoze, 2018. "A review of methods for vortex identification in hydroturbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1269-1285.
    16. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    17. Lam, Wei-Haur & Bhatia, Aalisha, 2013. "Folding tidal turbine as an innovative concept toward the new era of turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 463-473.
    18. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    19. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    20. David Valentín & Alexandre Presas & Eduard Egusquiza & Carme Valero & Mònica Egusquiza & Matias Bossio, 2017. "Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities," Energies, MDPI, vol. 10(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1199-1208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.