IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1519-1530.html
   My bibliography  Save this article

Comparative assessment of the application of methane and biogas in energy production: An experimental and numerical investigation

Author

Listed:
  • Kruczek, Grzegorz
  • Przybyła, Grzegorz
  • Ziółkowski, Łukasz
  • Adamczyk, Wojciech P.

Abstract

Internal combustion engines (ICEs) operated using gaseous fuels have shown significant potential in terms of the integration of renewable and traditional energy sources for an effective solution to clean energy production and storage challenges. In contrast, each mixture is characterized by different combustion properties that influence the overall ICE working conditions. The impact of the methane and biogas from anaerobic digestion under the emission levels and engine working conditions was investigated. The application of either a numerical or an experimental approach helps in adjusting the ICE operating conditions to fulfill strict emission regulations. The numerical model of an ICE provides the possibility to visualize the propagation of an emission front for different species, i.e., CO2, NO, and other parameters. The experimental studies included an in-cylinder pressure and exhaust-gas emission analysis for various excess oxygen ratios and spark timings. The numerical model accurately predicts the combustion process for variable excess oxygen ratios, fuel compositions, and the start of a spark. The results showed significantly lower emissions of NOx for biogas owing to a lower in-cylinder temperature. Moreover, the majority of NO and CO is located near the spark ignition and is not directly connected with the combustion in the flame front.

Suggested Citation

  • Kruczek, Grzegorz & Przybyła, Grzegorz & Ziółkowski, Łukasz & Adamczyk, Wojciech P., 2019. "Comparative assessment of the application of methane and biogas in energy production: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 143(C), pages 1519-1530.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1519-1530
    DOI: 10.1016/j.renene.2019.05.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    2. Hotta, Santosh Kumar & Sahoo, Niranjan & Mohanty, Kaustubha, 2019. "Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas," Renewable Energy, Elsevier, vol. 134(C), pages 1307-1319.
    3. Costa, M. & Marchitto, L. & Merola, S.S. & Sorge, U., 2014. "Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging," Energy, Elsevier, vol. 77(C), pages 88-96.
    4. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    5. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2015. "Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine," Applied Energy, Elsevier, vol. 160(C), pages 244-254.
    6. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    7. Ramadhas, A.S & Jayaraj, S & Muraleedharan, C, 2004. "Use of vegetable oils as I.C. engine fuels—A review," Renewable Energy, Elsevier, vol. 29(5), pages 727-742.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Ebrahem Ebrahemi & Mohamed Abdallah Bassiony & Thaer Mahmoud Ibrahim Syam & Samer Ahmed, 2020. "Investigating the effect of the air inlet temperature on the combustion characteristics of a spark ignition engine fueled by biogas," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 771-782, August.
    2. Li, Xing & Xie, Shengrong & Zhang, Jing & Li, Tao & Wang, Xiaohan, 2021. "Combustion characteristics of non-premixed CH4/CO2 jet flames in coflow air at normal and elevated temperatures," Energy, Elsevier, vol. 214(C).
    3. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    2. Hotta, Santosh Kumar & Sahoo, Niranjan & Mohanty, Kaustubha & Kulkarni, Vinayak, 2020. "Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine," Renewable Energy, Elsevier, vol. 150(C), pages 854-867.
    3. Silva, Felipe Pinheiro & de Souza, Samuel Nelson Melegari & Kitamura, Danilo Sey & Nogueira, Carlos Eduardo Camargo & Otto, Rodrigo Bueno, 2018. "Energy efficiency of a micro-generation unit of electricity from biogas of swine manure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3900-3906.
    4. Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
    5. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    6. Abdullah Ebrahem Ebrahemi & Mohamed Abdallah Bassiony & Thaer Mahmoud Ibrahim Syam & Samer Ahmed, 2020. "Investigating the effect of the air inlet temperature on the combustion characteristics of a spark ignition engine fueled by biogas," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 771-782, August.
    7. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    8. Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
    9. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    10. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    11. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    12. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    13. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    14. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    15. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    16. Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2016. "Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation," Energy, Elsevier, vol. 112(C), pages 264-272.
    17. Ping Sun & Ze Liu & Wei Dong & Song Yang, 2019. "Comparative Study on the Effects of Ethanol Proportion on the Particle Numbers Emissions in a Combined Injection Engine," Energies, MDPI, vol. 12(9), pages 1-18, May.
    18. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    19. Ashish J Chaudhari & Santosh K Hotta & Niranjan Sahoo & Vinayak Kulkarni, 2019. "Effect of vertical location of the spark plug on the performance of a raw biogas-fueled variable compression ratio spark ignition engine," Energy & Environment, , vol. 30(7), pages 1313-1338, November.
    20. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1519-1530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.