IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp858-873.html
   My bibliography  Save this article

Optimal planning and design of run-of-river hydroelectric power projects

Author

Listed:
  • Ibrahim, Mohamed
  • Imam, Yehya
  • Ghanem, Ashraf

Abstract

An optimal planning and preliminary-design (OPD) model was developed to maximize the annual net benefit of run-of-river (RoR) hydropower projects along a stream. The OPD model identifies optimal, non-overlapping RoR projects along the given stream. For each project, the OPD model determines intake location; penstock diameter and length; and type, number, and discharge of turbines. The OPD model applies genetic algorithm in two stages. The first stage optimizes design of individual potentially overlapping projects densely spaced at uniform intervals along the stream and the second stage determines the set of non-overlapping projects that maximizes the net hydropower benefit. Results of the OPD model compared favorably to results of previous models for a hypothetical case study. Further application of the OPD model to idealized case studies with different stream elevation profiles and with tributary flows indicated that the model gives reliable results. The OPD model was used to identify optimal RoR projects for the Guder River, Ethiopia. The OPD model identified 22 optimal RoR projects covering ∼49 km of the 127-km-long Guder River. The total annual generated energy from the identified projects is ∼540 GWh and the installed capacity for individual projects ranges between ∼1 MW and 21 MW.

Suggested Citation

  • Ibrahim, Mohamed & Imam, Yehya & Ghanem, Ashraf, 2019. "Optimal planning and design of run-of-river hydroelectric power projects," Renewable Energy, Elsevier, vol. 141(C), pages 858-873.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:858-873
    DOI: 10.1016/j.renene.2019.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larentis, Dante G. & Collischonn, Walter & Olivera, Francisco & Tucci, Carlos E.M., 2010. "Gis-based procedures for hydropower potential spotting," Energy, Elsevier, vol. 35(10), pages 4237-4243.
    2. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    3. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    4. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    5. Aggidis, G.A. & Luchinskaya, E. & Rothschild, R. & Howard, D.C., 2010. "The costs of small-scale hydro power production: Impact on the development of existing potential," Renewable Energy, Elsevier, vol. 35(12), pages 2632-2638.
    6. Yilma, Aster Denekew & Awulachew, Seleshi Bekele, 2009. "Characterization and atlas of the Blue Nile Basin and its sub basins," Conference Papers h042502, International Water Management Institute.
    7. Voros, N.G. & Kiranoudis, C.T. & Maroulis, Z.B., 2000. "Short-cut design of small hydroelectric plants," Renewable Energy, Elsevier, vol. 19(4), pages 545-563.
    8. Noor Khan & Mukand Babel & Tawatchai Tingsanchali & Roberto Clemente & Huynh Luong, 2012. "Reservoir Optimization-Simulation with a Sediment Evacuation Model to Minimize Irrigation Deficits," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3173-3193, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Claude Boris Amougou & David Tsuanyo & Davide Fioriti & Joseph Kenfack & Abdoul Aziz & Patrice Elé Abiama, 2022. "LCOE-Based Optimization for the Design of Small Run-of-River Hydropower Plants," Energies, MDPI, vol. 15(20), pages 1-35, October.
    3. Bragalli, Cristiana & Micocci, Domenico & Naldi, Giovanni, 2023. "On the influence of net head and efficiency fluctuations over the performance of existing run-of-river hydropower plants," Renewable Energy, Elsevier, vol. 206(C), pages 1170-1179.
    4. Sasthav, Colin & Oladosu, Gbadebo, 2022. "Environmental design of low-head run-of-river hydropower in the United States: A review of facility design models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    6. Abdelhady, Hazem U. & Imam, Yehya E. & Shawwash, Ziad & Ghanem, Ashraf, 2021. "Parallelized Bi-level optimization model with continuous search domain for selection of run-of-river hydropower projects," Renewable Energy, Elsevier, vol. 167(C), pages 116-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    2. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    3. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    4. Vincenzo Sammartano & Lorena Liuzzo & Gabriele Freni, 2019. "Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure," Energies, MDPI, vol. 12(18), pages 1-20, September.
    5. Abdelhady, Hazem U. & Imam, Yehya E. & Shawwash, Ziad & Ghanem, Ashraf, 2021. "Parallelized Bi-level optimization model with continuous search domain for selection of run-of-river hydropower projects," Renewable Energy, Elsevier, vol. 167(C), pages 116-131.
    6. Fasipe, O.A. & Izinyon, O.C. & Ehiorobo, J.O., 2021. "Hydropower potential assessment using spatial technology and hydrological modelling in Nigeria river basin," Renewable Energy, Elsevier, vol. 178(C), pages 960-976.
    7. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    8. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    9. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    10. Müller, Marc F. & Thompson, Sally E. & Kelly, Maggi N., 2016. "Bridging the information gap: A webGIS tool for rural electrification in data-scarce regions," Applied Energy, Elsevier, vol. 171(C), pages 277-286.
    11. Butera, Ilaria & Balestra, Roberto, 2015. "Estimation of the hydropower potential of irrigation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 140-151.
    12. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    13. Garegnani, Giulia & Sacchelli, Sandro & Balest, Jessica & Zambelli, Pietro, 2018. "GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys," Applied Energy, Elsevier, vol. 216(C), pages 709-723.
    14. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    15. Ioannidou, Christina & O’Hanley, Jesse R., 2018. "Eco-friendly location of small hydropower," European Journal of Operational Research, Elsevier, vol. 264(3), pages 907-918.
    16. Zaidi, Arjumand Z. & Khan, Majid, 2018. "Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 106-116.
    17. Petras Punys & Antanas Dumbrauskas & Algis Kvaraciejus & Gitana Vyciene, 2011. "Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications," Energies, MDPI, vol. 4(9), pages 1-20, August.
    18. Zema, Demetrio Antonio & Nicotra, Angelo & Tamburino, Vincenzo & Zimbone, Santo Marcello, 2016. "A simple method to evaluate the technical and economic feasibility of micro hydro power plants in existing irrigation systems," Renewable Energy, Elsevier, vol. 85(C), pages 498-506.
    19. A. Palla & I. Gnecco & P. Barbera & M. Ivaldi & D. Caviglia, 2016. "An Integrated GIS Approach to Assess the Mini Hydropower Potential," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2979-2996, July.
    20. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:858-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.