IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp715-721.html
   My bibliography  Save this article

Review of techno-economic and environmental aspects of building small hydro electric plants – A case study in Serbia

Author

Listed:
  • Ciric, Rade M.

Abstract

Climate change mainly caused by increased greenhouse gases and reduced fossil fuel reserves, have launched a more intensive use of renewable energy on a global scale. One of the oldest types of the renewable sources is well known small hydro electric facility. In this paper description of small hydro plant location, selection of the turbine, sizing of the plant, connecting plant to the grid, as well as the legal aspect and environmental impact of the future facility in Serbia are presented and discussed. Besides, techno-economic analysis of future small hydro electric plant is presented and discussed. The main contribution of this paper is multidisciplinary approach to complex analysis of building, integration, economic performance and environmental impact of a small hydro-plant demonstrated on the specific site in Serbia. Finally, major barriers and threats for the growth of the small hydro-electric power capacity have been identified and proposals to increase the penetration level of the small hydro and other renewable sources into the grid in Serbia are made. To increase the contribution of the small hydro and other renewables in Serbia and South-East Europe countries, the gouverments should remove all the bariers and strongly encourage the investment in the renewable energy sector.

Suggested Citation

  • Ciric, Rade M., 2019. "Review of techno-economic and environmental aspects of building small hydro electric plants – A case study in Serbia," Renewable Energy, Elsevier, vol. 140(C), pages 715-721.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:715-721
    DOI: 10.1016/j.renene.2019.03.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    2. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    3. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    4. Peña, Rafael & Medina, Aurelio & Anaya-Lara, Olimpo & McDonald, James R., 2009. "Capacity estimation of a minihydro plant based on time series forecasting," Renewable Energy, Elsevier, vol. 34(5), pages 1204-1209.
    5. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    6. Sachdev, Hira Singh & Akella, Ashok Kumar & Kumar, Niranjan, 2015. "Analysis and evaluation of small hydropower plants: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1013-1022.
    7. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    8. Wang, Zhenyu & Fang, Shibiao & Chen, Xiaojian & Sun, Zhilin & Li, Fuqiang, 2015. "Rural hydropower renovation project implementation in China: A review of renovation planning, renovation schemes and guarantee mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 798-808.
    9. Mishra, Mukesh Kumar & Khare, Nilay & Agrawal, Alka Bani, 2015. "Small hydro power in India: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 101-115.
    10. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    11. Ioannis Niadas & Panos Mentzelopoulos, 2008. "Probabilistic Flow Duration Curves for Small Hydro Plant Design and Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 509-523, April.
    12. Okot, David Kilama, 2013. "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 515-520.
    13. Hosseini, S. M. H. & Forouzbakhsh, F. & Rahimpoor, M., 2005. "Determination of the optimal installation capacity of small hydro-power plants through the use of technical, economic and reliability indices," Energy Policy, Elsevier, vol. 33(15), pages 1948-1956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urošević, Branka Gvozdenac & Marinović, Budimirka, 2021. "Ranking construction of small hydro power plants using multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 172(C), pages 1174-1183.
    2. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    3. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    4. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    5. Parsa, Navid & Bahmani-Firouzi, Bahman & Niknam, Taher, 2021. "A social-economic-technical framework for reinforcing the automated distribution systems considering optimal switching and plug-in hybrid electric vehicles," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    2. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    3. Sasthav, Colin & Oladosu, Gbadebo, 2022. "Environmental design of low-head run-of-river hydropower in the United States: A review of facility design models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    5. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    6. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    7. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    8. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    9. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    10. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    11. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    12. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    13. Menéndez, Javier & Fernández-Oro, Jesús M. & Galdo, Mónica & Loredo, Jorge, 2019. "Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production," Renewable Energy, Elsevier, vol. 143(C), pages 1427-1438.
    14. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    15. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    16. Alamian, Rezvan & Shafaghat, Rouzbeh & Amiri, Hoseyn A. & Shadloo, Mostafa Safdari, 2020. "Experimental assessment of a 100 W prototype horizontal axis tidal turbine by towing tank tests," Renewable Energy, Elsevier, vol. 155(C), pages 172-180.
    17. Sengpanich, K. & Bohez, Erik L.J. & Thongkruer, P. & Sakulphan, K., 2019. "New mode to operate centrifugal pump as impulse turbine," Renewable Energy, Elsevier, vol. 140(C), pages 983-993.
    18. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    19. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    20. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:715-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.