IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp760-768.html
   My bibliography  Save this article

Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units

Author

Listed:
  • Kong, Ziqian
  • Tang, Baoping
  • Deng, Lei
  • Liu, Wenyi
  • Han, Yan

Abstract

Aimed at identifying the health state of wind turbines accurately by comprehensively using the change information in spatial and temporal scale of the supervisory control and data acquisition (SCADA) data, a novel condition monitoring method of wind turbines based on spatio-temporal features fusion of SCADA data by convolutional neural networks (CNN) and gated recurrent unit (GRU) was proposed in this paper. First, missing value complement and selection of variables with Pearson prod-moment correlation coefficient were applied to improve the effectiveness of SCADA data. Second, a deep learning model was constructed by the structures of CNN and GRU. The spatial features in SCADA data were extracted by CNN at every step, and the temporal features in the sequence of spatial features were extracted and fused by GRU. Third, the historical healthy SCADA data was used to train the normal behavior model. At last, the trained model received measured data and output the predicted values. The entire residual between the actual data and the predicted output was calculated to put into the exponential weighted moving average control chart for recognizing the condition of the wind turbine. The effectiveness and availability of the proposed method were proved in measured SCADA data experiments.

Suggested Citation

  • Kong, Ziqian & Tang, Baoping & Deng, Lei & Liu, Wenyi & Han, Yan, 2020. "Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units," Renewable Energy, Elsevier, vol. 146(C), pages 760-768.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:760-768
    DOI: 10.1016/j.renene.2019.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Astolfi, Davide & Castellani, Francesco & Garinei, Alberto & Terzi, Ludovico, 2015. "Data mining techniques for performance analysis of onshore wind farms," Applied Energy, Elsevier, vol. 148(C), pages 220-233.
    2. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    3. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    4. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    5. Lei, Jinhao & Liu, Chao & Jiang, Dongxiang, 2019. "Fault diagnosis of wind turbine based on Long Short-term memory networks," Renewable Energy, Elsevier, vol. 133(C), pages 422-432.
    6. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    7. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu Wen & Yubao Liu & Rongfu Sun & Yuewei Liu, 2022. "Research on Anomaly Detection of Wind Farm SCADA Wind Speed Data," Energies, MDPI, vol. 15(16), pages 1-18, August.
    2. Adrian Stetco & Juan Melecio Ramirez & Anees Mohammed & Siniša Djurović & Goran Nenadic & John Keane, 2020. "An End-to-End, Real-Time Solution for Condition Monitoring of Wind Turbine Generators," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    4. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    5. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
    6. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    7. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    8. Yao, Qingtao & Zhu, Haowei & Xiang, Ling & Su, Hao & Hu, Aijun, 2023. "A novel composed method of cleaning anomy data for improving state prediction of wind turbine," Renewable Energy, Elsevier, vol. 204(C), pages 131-140.
    9. Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
    10. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    12. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    13. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).
    14. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    15. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    16. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    18. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    19. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    20. Afef Fekih & Hamed Habibi & Silvio Simani, 2022. "Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview," Energies, MDPI, vol. 15(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    2. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    3. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    4. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    5. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    6. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    7. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    8. Menéndez, Javier & Fernández-Oro, Jesús M. & Galdo, Mónica & Loredo, Jorge, 2019. "Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production," Renewable Energy, Elsevier, vol. 143(C), pages 1427-1438.
    9. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    10. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    11. Alamian, Rezvan & Shafaghat, Rouzbeh & Amiri, Hoseyn A. & Shadloo, Mostafa Safdari, 2020. "Experimental assessment of a 100 W prototype horizontal axis tidal turbine by towing tank tests," Renewable Energy, Elsevier, vol. 155(C), pages 172-180.
    12. Ciric, Rade M., 2019. "Review of techno-economic and environmental aspects of building small hydro electric plants – A case study in Serbia," Renewable Energy, Elsevier, vol. 140(C), pages 715-721.
    13. Sengpanich, K. & Bohez, Erik L.J. & Thongkruer, P. & Sakulphan, K., 2019. "New mode to operate centrifugal pump as impulse turbine," Renewable Energy, Elsevier, vol. 140(C), pages 983-993.
    14. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    15. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    16. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    17. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    18. Zhenwei Huang & Yadong Han & Lei Tan & Chuibing Huang, 2019. "Influence of T-Shape Tip Clearance on Energy Performance and Broadband Noise for a NACA0009 Hydrofoil," Energies, MDPI, vol. 12(21), pages 1-13, October.
    19. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    20. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:760-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.