IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp1077-1085.html
   My bibliography  Save this article

Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil

Author

Listed:
  • Rafieenia, Razieh
  • Pivato, Alberto
  • Lavagnolo, Maria Cristina

Abstract

The fermentation of food waste by anaerobic mixed cultures pretreated with waste frying oil (WFO) was examined in this study. Waste frying oil was used as a stressing agent to suppress hydrogenotrophic methanogens and enrich H2-producing bacteria. Lipid-rich compounds can be adsorbed onto the cell wall of some species, including methanogens, and they can reduce the permeability of the membranes and limit nutrient transport into cells. The optimization of H2 yield was performed using a three-factor, three-level Box-Behnken design method. Initial pH, pretreatment duration and waste frying oil concentration were considered the experimental factors. Pretreatment with waste frying oil decreased the production of CH4 significantly and, in turn, improved H2 accumulation. The response surface model predicted complete inhibition of methanogens with 7.74 g/L waste frying oil, an initial pH of 5.5 and a duration of 42.67 h for the pretreatment conditions. Applying these conditions led to an experimental H2 yield of 71.34 mL/gVS, which was significantly higher than that of untreated cultures (12.97 mL/gVS).

Suggested Citation

  • Rafieenia, Razieh & Pivato, Alberto & Lavagnolo, Maria Cristina, 2019. "Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil," Renewable Energy, Elsevier, vol. 139(C), pages 1077-1085.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:1077-1085
    DOI: 10.1016/j.renene.2019.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Sheng & Li, Jian-Zheng & Liu, Feng, 2011. "Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge," Renewable Energy, Elsevier, vol. 36(5), pages 1517-1522.
    2. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    3. Shanmugam, Saravanan R. & Lalman, Jerald A. & Chaganti, Subba Rao & Heath, Daniel D. & Lau, Peter C.K. & Shewa, Wudneh A., 2016. "Long term impact of stressing agents on fermentative hydrogen production: Effect on the hydrogenase flux and population diversity," Renewable Energy, Elsevier, vol. 88(C), pages 483-493.
    4. Cirne, D.G. & Paloumet, X. & Björnsson, L. & Alves, M.M. & Mattiasson, B., 2007. "Anaerobic digestion of lipid-rich waste—Effects of lipid concentration," Renewable Energy, Elsevier, vol. 32(6), pages 965-975.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    2. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    3. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    4. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    5. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    6. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    7. Carrillo-Reyes, Julián & Cortés-Carmona, Miguel Angel & Bárcenas-Ruiz, Christian Daniela & Razo-Flores, Elías, 2016. "Cell wash-out enrichment increases the stability and performance of biohydrogen producing packed-bed reactors and the community transition along the operation time," Renewable Energy, Elsevier, vol. 97(C), pages 266-273.
    8. Xiaolan Xiao & Wansheng Shi & Wenquan Ruan, 2019. "Effects of High Sludge Cycle Frequency on Performance and Syntrophic Metabolism of Anaerobic Membrane Bioreactor for Treating High-Lipid Kitchen Waste Slurry," Energies, MDPI, vol. 12(14), pages 1-13, July.
    9. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    10. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin & Nie, Yongfeng, 2017. "Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion," Energy, Elsevier, vol. 118(C), pages 377-386.
    11. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    12. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    13. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
    14. Naaz, Farah & Bhattacharya, Arghya & Pant, Kamal K. & Malik, Anushree, 2019. "Investigations on energy efficiency of biomethane/biocrude production from pilot scale wastewater grown algal biomass," Applied Energy, Elsevier, vol. 254(C).
    15. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    16. Vítor João Pereira Domingues Martinho, 2021. "Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    17. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    18. Wong, Y.M. & Juan, J.C. & Ting, Adeline & Wu, T.Y., 2014. "High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge," Energy, Elsevier, vol. 72(C), pages 628-635.
    19. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    20. Ekwenna, Emeka Boniface & Tabraiz, Shamas & Wang, Yaodong & Roskilly, Anthony, 2023. "Exploring the feasibility of biological hydrogen production using seed sludge pretreated with agro-industrial wastes," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:1077-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.