IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp23-32.html
   My bibliography  Save this article

Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis

Author

Listed:
  • Balakin, Boris V.
  • Zhdaneev, Oleg V.
  • Kosinska, Anna
  • Kutsenko, Kirill V.

Abstract

Direct absorption collectors (DAC) with nanofluid are among the most promising yet least studied in solar energy technology. There are numerous micro- and macroscopic factors that determine their efficiency. This complicates in situ optimization of DACs using physical prototypes. The present paper describes a multiphase CFD model of the collector, which was validated against two independent experimental datasets. The model was used for a multiparametric numerical analysis, where we altered concentration and size of the nanoparticles, as well as the geometry and inclination of the collector. The optimization resulted in up to 10% improvement in the collector's efficiency. Finally, we considered the process of thermomagnetic convection in the collector using a magnetic nanofluid. This resulted in a 30% increase in the collector performance.

Suggested Citation

  • Balakin, Boris V. & Zhdaneev, Oleg V. & Kosinska, Anna & Kutsenko, Kirill V., 2019. "Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis," Renewable Energy, Elsevier, vol. 136(C), pages 23-32.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:23-32
    DOI: 10.1016/j.renene.2018.12.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    2. Karami, M. & Akhavan-Bahabadi, M.A. & Delfani, S. & Raisee, M., 2015. "Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 793-801.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    3. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    4. Shojaeizadeh, Ehsan & Veysi, Farzad & Habibi, Hossein & Goodarzi, Koorosh & Habibi, Mehrdad, 2021. "Thermal efficiency investigation of a ferrofluid-based cylindrical solar collector with a helical pipe receiver under the effect of magnetic field," Renewable Energy, Elsevier, vol. 176(C), pages 198-213.
    5. Bhalla, Vishal & Khullar, Vikrant & Parupudi, Ranga Vihari, 2022. "Design and thermal analysis of nanofluid-based compound parabolic concentrator," Renewable Energy, Elsevier, vol. 185(C), pages 348-362.
    6. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    7. Nižetić, Sandro & Jurčević, Mišo & Arıcı, Müslüm & Arasu, A. Valan & Xie, Gongnan, 2020. "Nano-enhanced phase change materials and fluids in energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    8. Zeng, Jia & Xuan, Yimin, 2022. "Direct solar-thermal conversion features of flowing photonic nanofluids," Renewable Energy, Elsevier, vol. 188(C), pages 588-602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    2. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    3. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Omer A. Alawi & Haslinda Mohamed Kamar & Abdul Rahman Mallah & Hussein A. Mohammed & Mohd Aizad Sazrul Sabrudin & Kazi Md. Salim Newaz & Gholamhassan Najafi & Zaher Mundher Yaseen, 2021. "Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    6. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    7. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Muhammad Imtiaz Hussain & Gwi-Hyun Lee & Jun-Tae Kim, 2021. "A Comprehensive Performance Characterization of a Nanofluid-Powered Dual-Fluid PV/T System under Outdoor Steady State Conditions," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    9. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
    10. Mallah, Abdul Rahman & Zubir, M.N.M. & Alawi, Omer A. & Kazi, S.N. & Ahmed, W. & Sadri, R. & Kasaeian, Alibakhsh, 2022. "Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 1204-1223.
    11. Gimeno-Furió, Alexandra & Martínez-Cuenca, Raúl & Mondragón, Rosa & Gasulla, Antonio Fabián Vela & Doñate-Buendía, Carlos & Mínguez-Vega, Gladys & Hernández, Leonor, 2020. "Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications," Energy, Elsevier, vol. 212(C).
    12. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    13. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    14. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    15. Ram, Shri & Ganesan, H. & Saini, Vishnu & Kumar, Abhinav, 2023. "Performance assessment of a parabolic trough solar collector using nanofluid and water based on direct absorption," Renewable Energy, Elsevier, vol. 214(C), pages 11-22.
    16. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    17. Liang, Mengjun & Karthick, Ramalingam & Wei, Qiang & Dai, Jinhong & Jiang, Zhuosheng & Chen, Xuncai & Oo, Than Zaw & Aung, Su Htike & Chen, Fuming, 2022. "The progress and prospect of the solar-driven photoelectrochemical desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    19. Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
    20. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:23-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.