IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp351-356.html

High gravity enzymatic hydrolysis of hydrothermal and ultrasonic pretreated big bluestem with recycling prehydrolysate water

Author

Listed:
  • Xu, Youjie
  • Zhang, Ke
  • Wang, Donghai

Abstract

Enhancing sugar concentration and minimizing water consumption are key objectives for future cellulosic biofuel economics. To achieve those objectives, high-solids loading pretreatment and enzymatic hydrolysis (up to 20%, w/v) were studied. Big bluestem was selected and combined hydrothermal and ultrasonic treatment without chemicals addition was carried out in this study. Optimal high-solids loading pretreatment (16%, w/v) was identified in the ultrasonic reactor at 200 °C for 30 min. High-solids enzymatic hydrolysis (12%, w/v) was inefficient in the laboratory rotary shaker. However, using a horizontal reactor with good mixing is effective for high solids loading (20%, w/v), yielding 75 g/L of glucose. Minimum water to detoxify pretreated biomass while maintaining high sugar yields was 10 mL/g, which reduced by 50% as compared to the conventional washing process for steam-treated wheat straw. Recycling pretreatment liquor to treat the next batch of biomass was proved to be feasible without affecting the sugar yields.

Suggested Citation

  • Xu, Youjie & Zhang, Ke & Wang, Donghai, 2017. "High gravity enzymatic hydrolysis of hydrothermal and ultrasonic pretreated big bluestem with recycling prehydrolysate water," Renewable Energy, Elsevier, vol. 114(PB), pages 351-356.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:351-356
    DOI: 10.1016/j.renene.2017.07.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ke & Johnson, Loretta & Prasad, P.V. Vara & Pei, Zhijian & Yuan, Wenqiao & Wang, Donghai, 2015. "Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield," Energy, Elsevier, vol. 83(C), pages 358-365.
    2. Zhang, Ke & Johnson, Loretta & Vara Prasad, P.V. & Pei, Zhijian & Wang, Donghai, 2015. "Big bluestem as a bioenergy crop: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 740-756.
    3. Kim, Tae Hoon & Kim, Tae Hyun, 2014. "Overview of technical barriers and implementation of cellulosic ethanol in the U.S," Energy, Elsevier, vol. 66(C), pages 13-19.
    4. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Pontes, Rita & Romaní, Aloia & Michelin, Michele & Domingues, Lucília & Teixeira, José & Nunes, João, 2018. "Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds," Renewable Energy, Elsevier, vol. 128(PA), pages 20-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ke & Xu, Youjie & Johnson, Loretta & Yuan, Wenqiao & Pei, Zhijian & Wang, Donghai, 2017. "Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem," Renewable Energy, Elsevier, vol. 109(C), pages 101-109.
    2. Appiah-Nkansah, Nana Baah & Li, Jun & Rooney, William & Wang, Donghai, 2019. "A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1121-1132.
    3. Hanna Pińkowska & Małgorzata Krzywonos & Paweł Wolak & Przemysław Seruga & Agata Górniak & Adrianna Złocińska & Michał Ptak, 2020. "Sustainable Production of 5-Hydroxymethylfurfural from Pectin-Free Sugar Beet Pulp in a Simple Aqueous Phase System-Optimization with Doehlert Design," Energies, MDPI, vol. 13(21), pages 1-15, October.
    4. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    5. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    6. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    7. René A. Garrido & Camila Lagos & Carolina Luna & Jaime Sánchez & Georgina Díaz, 2021. "Study of the Potential Uses of Hydrochar from Grape Pomace and Walnut Shells Generated from Hydrothermal Carbonization as an Alternative for the Revalorization of Agri-Waste in Chile," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    8. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
    10. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    11. Vicente, Filipa A. & Hren, Robert & Novak, Uroš & Čuček, Lidija & Likozar, Blaž & Vujanović, Annamaria, 2024. "Energy demand distribution and environmental impact assessment of chitosan production from shrimp shells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    13. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    14. Lin, Richen & Deng, Chen & Cheng, Jun & Murphy, Jerry D., 2020. "Low concentrations of furfural facilitate biohydrogen production in dark fermentation using Enterobacter aerogenes," Renewable Energy, Elsevier, vol. 150(C), pages 23-30.
    15. Kouteu Nanssou, Paul Alain & Jiokap Nono, Yvette & Kapseu, César, 2016. "Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process," Renewable Energy, Elsevier, vol. 97(C), pages 252-265.
    16. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    17. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Tae Hoon Kim & Dongjoong Im & Kyeong Keun Oh & Tae Hyun Kim, 2018. "Effects of Organosolv Pretreatment Using Temperature-Controlled Bench-Scale Ball Milling on Enzymatic Saccharification of Miscanthus × giganteus," Energies, MDPI, vol. 11(10), pages 1-13, October.
    19. Corton, J. & Donnison, I.S. & Ross, A.B. & Lea-Langton, A.R. & Wachendorf, M. & Fraser, M.D., 2021. "Impact of vegetation type and pre-processing on product yields and properties following hydrothermal conversion of conservation biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Róger Moya & Carolina Tenorio & Gloria Oporto, 2019. "Short Rotation Wood Crops in Latin American: A Review on Status and Potential Uses as Biofuel," Energies, MDPI, vol. 12(4), pages 1-20, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:351-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.