IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p357-369.html
   My bibliography  Save this article

A Petri net-based modelling of replacement strategies under technological obsolescence

Author

Listed:
  • Clavareau, Julien
  • Labeau, Pierre-Etienne

Abstract

The technological obsolescence of a unit is characterised by the existence of challenger units displaying identical functionalities, but with higher performances. Though this issue is commonly encountered in practice, it has received little consideration in the literature. Previous exploratory works have treated the problem of replacing old-technology items by new ones, for identical components facing a unique new generation of items. This paper aims to define, in a realistic way, possible replacement policies when several types of challenger units are available and when the performances of these newly available units improve with time.

Suggested Citation

  • Clavareau, Julien & Labeau, Pierre-Etienne, 2009. "A Petri net-based modelling of replacement strategies under technological obsolescence," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 357-369.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:357-369
    DOI: 10.1016/j.ress.2008.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kijima, Masaaki & Morimura, Hidenori & Suzuki, Yasusuke, 1988. "Periodical replacement problem without assuming minimal repair," European Journal of Operational Research, Elsevier, vol. 37(2), pages 194-203, November.
    2. Wu, Shaomin & Clements-Croome, Derek, 2005. "Preventive maintenance models with random maintenance quality," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 99-105.
    3. Sophie Mercier & Pierre‐Etienne Labeau, 2004. "Optimal replacement policy for a series system with obsolescence," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 20(1), pages 73-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleyner, Andre & Volovoi, Vitali, 2010. "Application of Petri nets to reliability prediction of occupant safety systems with partial detection and repair," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 606-613.
    2. Nguyen, T.P.K. & Castanier, Bruno & Yeung, Thomas G., 2014. "Maintaining a system subject to uncertain technological evolution," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 56-65.
    3. Monnin, Maxime & Iung, Benoit & Sénéchal, Olivier, 2011. "Dynamic behavioural model for assessing impact of regeneration actions on system availability: Application to weapon systems," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 410-424.
    4. Simeu-Abazi, Zineb & Ahmad, Alali Alhouaij, 2011. "Optimisation of distributed maintenance: Modelling and application to the multi-factory production," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1564-1575.
    5. Sheng, Jingyu & Prescott, Darren, 2017. "A hierarchical coloured Petri net model of fleet maintenance with cannibalisation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 290-305.
    6. Khanh T.P. Nguyen & Thomas Yeung & Bruno Castanier, 2017. "Acquisition of new technology information for maintenance and replacement policies," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2212-2231, April.
    7. Mellal, Mohamed Arezki, 2020. "Obsolescence – A review of the literature," Technology in Society, Elsevier, vol. 63(C).
    8. Öner, K.B. & Kiesmüller, G.P. & van Houtum, G.J., 2015. "On the upgrading policy after the redesign of a component for reliability improvement," European Journal of Operational Research, Elsevier, vol. 244(3), pages 867-880.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clavareau, Julien & Labeau, Pierre-Etienne, 2009. "Maintenance and replacement policies under technological obsolescence," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 370-381.
    2. P-E Labeau & M-C Segovia, 2011. "Effective age models for imperfect maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 117-130, June.
    3. Zhou, Yu & Kou, Gang & Xiao, Hui & Peng, Yi & Alsaadi, Fawaz E., 2020. "Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Wu, Shaomin, 2012. "Assessing maintenance contracts when preventive maintenance is outsourced," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 66-72.
    5. Chaoqun Duan & Chao Deng & Bingran Wang, 2019. "Multi-phase sequential preventive maintenance scheduling for deteriorating repairable systems," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1779-1793, April.
    6. Mamabolo R. M. & Beichelt F. E., 2004. "Maintenance Policies with Minimal Repair," Stochastics and Quality Control, De Gruyter, vol. 19(2), pages 143-166, January.
    7. Bruns, Peter, 2002. "Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs," European Journal of Operational Research, Elsevier, vol. 139(1), pages 146-165, May.
    8. Wu, Shaomin & Scarf, Philip, 2015. "Decline and repair, and covariate effects," European Journal of Operational Research, Elsevier, vol. 244(1), pages 219-226.
    9. Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
    10. Love, C. E. & Zhang, Z. G. & Zitron, M. A. & Guo, R., 2000. "A discrete semi-Markov decision model to determine the optimal repair/replacement policy under general repairs," European Journal of Operational Research, Elsevier, vol. 125(2), pages 398-409, September.
    11. Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
    12. Ammar Y. Alqahtani & Surendra M. Gupta, 2017. "One-Dimensional Renewable Warranty Management within Sustainable Supply Chain," Resources, MDPI, vol. 6(2), pages 1-26, April.
    13. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    14. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    15. Kahle, Waltraud, 2007. "Optimal maintenance policies in incomplete repair models," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 563-565.
    16. Öhman, Mikael & Finne, Max & Holmström, Jan, 2015. "Measuring service outcomes for adaptive preventive maintenance," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 457-467.
    17. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    18. Sergey S. Ketkov & Oleg A. Prokopyev & Lisa M. Maillart, 2023. "Planning of life-depleting preventive maintenance activities with replacements," Annals of Operations Research, Springer, vol. 324(1), pages 1461-1483, May.
    19. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Wang, Naichao & Li, Mingyuan & Xiao, Boping & Ma, Lin, 2019. "Availability analysis of a general time distribution system with the consideration of maintenance and spares," Reliability Engineering and System Safety, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:357-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.