IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002212.html
   My bibliography  Save this article

Resilience quantification method of high-speed railway train diagram under operation section interference: Strategies and practices

Author

Listed:
  • Li, Xinxin
  • Huang, Wencheng

Abstract

In this paper, we propose a method for quantifying the resilience of high-speed railway train diagram (HSRTD) under section interference. The resilience of HSRTD is defined as the ability to resist, adapt to the impact of section interference, and quickly recover to normal operation state from the impact. Firstly, by establishing a HSR train operation control model based on cellular automata, the real-time control and feedback of affected train number and affected time under section interference can be obtained. Then, from the three aspects of resistance ability, adaptation ability and recovery ability, six indicators including vulnerability, redundancy, absorbability, survivability, sensitivity and dependency are selected to quantify the resilience of HSRTD. Next, three strategies including removing some operation lines, moving some operation lines, removing and adding some operation lines are proposed for restoring and adjusting the operation of HSR trains under section interference. Finally, the Xi'an North-Baoji South HSRTD is selected as a case study to compare and analyze the resilience quantification results with different recovery and adjustment strategies under section interference. Among the three strategies for adjusting the HSRTD, removing some operation trains in the affected area has the most significant effect on improving the resilience of the HSRTD.

Suggested Citation

  • Li, Xinxin & Huang, Wencheng, 2025. "Resilience quantification method of high-speed railway train diagram under operation section interference: Strategies and practices," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002212
    DOI: 10.1016/j.ress.2025.111020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.