IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001164.html
   My bibliography  Save this article

Enhanced prediction of pipe failure through transient simulation-aided logistic regression

Author

Listed:
  • Zhong, Dan
  • Huang, Chaoyuan
  • Ma, Wencheng
  • Deng, Liming
  • Zhou, Jinbo
  • Xia, Ying

Abstract

To reduce leakage and improve the stability of the water supply system, water companies are increasingly adopting pipe failure prediction models based on hydraulic and non-hydraulic factors. However, these companies often face the challenge of limited data and conventional hydraulic factors have limited predictive capability in capturing the complex dynamics of pipe failures. This study proposed a logistic regression model based on hydraulic transient simulation, illustrated with the real case of a Chinese city. The data recorded included 246 pipe failures in one year. The model considered the influence of pressure, flow rate variations, and the network topology of the water supply system through hydraulic transient simulation and quantitatively analyzed the simulation results. The logistic regression model combined non-hydraulic factors with the quantitative analysis results of hydraulic factors to predict pipe failures. This study risk-categorized six areas that were prone to pipe failures. The developed model demonstrated significant accuracy and reliability in predicting pipe failures at high-risk levels. 75.61 % of true failure events were correctly predicted and the area under the curve values (AUC) value increased from 0.706 to 0.809 when incorporating transient simulation. This demonstrates that the model is effective in capturing the dynamic characteristics of the hydraulic factors and exhibits a high degree of accuracy even with a limited amount of data. This provides a feasible solution for water companies to accurately predict pipe failures.

Suggested Citation

  • Zhong, Dan & Huang, Chaoyuan & Ma, Wencheng & Deng, Liming & Zhou, Jinbo & Xia, Ying, 2025. "Enhanced prediction of pipe failure through transient simulation-aided logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001164
    DOI: 10.1016/j.ress.2025.110913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.