IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002448.html
   My bibliography  Save this article

A probabilistic analysis method for evaluating the safety & resilience of urban gas pipeline network

Author

Listed:
  • Chen, Xing-lin
  • Huang, Zong-hou
  • Ge, Fan-liang
  • Lin, Wei-dong
  • Yang, Fu-qiang

Abstract

Urban gas pipeline networks (UGPN) provide important support for high-quality urbanization. Therefore, it is imperative to analyze and assess the potential failures of UGPN. A novel probabilistic analysis method is proposed for assessing the safety and resilience of UGPN. Firstly, Bow-Tie analysis is used to identify faults. Then, a four-dimensional resilience assessment network is developed. Bayesian network is utilized to model the relationship between the variables, while dynamic Bayesian network is used to consider the dynamic nature of the system. The results of the study show that the proposed model can accurately estimate faults, consequences, and influence paths. Furthermore, the resilience analysis shows that monitoring the objective conditions is crucial and that the initial failure probability of the UGPN decreases from 0.03767 % to 0.01435 % when connected to a resilience network, indicating that considering resilience can effectively improve the reliability and safety of the UGPN. Two application examples are presented in the paper to validate the functionality of the proposed model. The proposed model can be used to set the state of UGPN to predict the probability of occurrence of a specific event and its consequences and to simulate the improvement trend of UGPN based on the direction of focus of future work.

Suggested Citation

  • Chen, Xing-lin & Huang, Zong-hou & Ge, Fan-liang & Lin, Wei-dong & Yang, Fu-qiang, 2024. "A probabilistic analysis method for evaluating the safety & resilience of urban gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002448
    DOI: 10.1016/j.ress.2024.110170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.