A dual-purpose data-model interactive framework for multi-sensor selection and prognosis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2025.110904
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Tianmei & Pei, Hong & Si, Xiaosheng & Lei, Yaguo, 2023. "Prognosis for stochastic degrading systems with massive data: A data-model interactive perspective," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
- Han, Yaoyao & Ding, Xiaoxi & Gu, Fengshou & Chen, Xiaohui & Xu, Minmin, 2025. "Dual-drive RUL prediction of gear transmission systems based on dynamic model and unsupervised domain adaption under zero sample," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Khaleghi, Sahar & Hosen, Md Sazzad & Van Mierlo, Joeri & Berecibar, Maitane, 2024. "Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Song, Dengwei & Cheng, Yujie & Zhou, An & Lu, Chen & Chong, Jin & Ma, Jian, 2024. "Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Xiaosheng, Si & Li, Huiqin & Zhang, Zhengxin & Li, Naipeng, 2024. "A Wiener-process-inspired semi-stochastic filtering approach for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Mingjun Liu & Zengshou Dong & Hui Shi, 2023. "Multi-Sensor Information Fusion and Multi-Model Fusion-Based Remaining Useful Life Prediction of Fan Slewing Bearings with the Nonlinear Wiener Process," Sustainability, MDPI, vol. 15(15), pages 1-27, August.
- Si, Xiao-Sheng & Li, Tianmei & Zhang, Jianxun & Lei, Yaguo, 2022. "Nonlinear degradation modeling and prognostics: A Box-Cox transformation perspective," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Liu, Jie & Hou, Bingchang & Lu, Ming & Wang, Dong, 2024. "Box-Cox transformation based state-space modeling as a unified prognostic framework for degradation linearization and RUL prediction enhancement," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Zhou, Maohui & Li, Yanjun & Cao, Yuyuan & Ma, Xinyu & Xu, Zhenteng, 2025. "Physics-informed spatio-temporal hybrid neural networks for predicting remaining useful life in aircraft engine," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Xu, Xiaobin & Zhou, Jiahao & Weng, Xu & Zhang, Zehui & He, Hong & Steyskal, Felix & Brunauer, Georg, 2024. "A novel evidence reasoning-based RUL prediction method integrating uncertainty information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Zhang, Zhengxin & Li, Huiqin & Li, Tianmei & Zhang, Jianxun & Si, Xiaosheng, 2024. "An optimal condition-based maintenance policy for nonlinear stochastic degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Zhang, Qing & Li, Shaochen & Chin-Hon, Tan & Liu, Xiaofei & Shen, Jingyuan & Shi, Tielin & Xuan, Jianping, 2025. "Fault Impulse Inference and Cyclostationary Approximation: A feature-interpretable intelligent fault detection method for few-shot unsupervised domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
- Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
- Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
- Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
- KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
- Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
- Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
- Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Mo, Renpeng & Zhou, Han & Yin, Hongpeng & Si, Xiaosheng, 2025. "A survey on few-shot learning for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
- Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
More about this item
Keywords
Multi-sensor data; Remaining useful life; Data-model interaction; Prognosis; Sensor selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001073. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.