IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000341.html
   My bibliography  Save this article

Multi-agent-based failure modeling for uncrewed swarm systems considering cross-layer diffusion characteristics

Author

Listed:
  • Guo, Xing
  • Feng, Qiang
  • Wu, Zeyu
  • Liu, Meng
  • Ren, Yi
  • Yang, Chao
  • Wang, Zili

Abstract

Uncrewed swarm systems (USSs) are injecting renewed vigor into societal development and economic growth, and their failure modeling is crucial for ensuring the safety and stability of system operations. However, traditional modeling methods are insufficient for describing the cross-layer diffusion characteristics of USS failure. In this context, proposed here is a multi-agent-based failure modeling approach to establish the groundwork for analyzing USS failure. A failure modeling framework grounded in agent-based modeling methodology is developed to efficiently capture and organize the multi-layer failure information of a USS. Expanding on this framework, the interaction mechanism of agents is designed to delineate the operational processes and failure propagation paths of the USS. A dynamic clock failure model, structural functions, and functional constraint matrices are integrated effectively to describe the cross-layer failure behaviors of the components, subsystems, and nodes of the USS. Furthermore, a unified modeling approach is proposed to describe the failure propagation within and between nodes. Finally, a case study of a USS comprising 16 uncrewed aerial vehicles and eight satellites is conducted to validate the effectiveness of the proposed approach. The simulation results reveal that the electric distribution board, voltage stabilizer, and flight control board significantly influence the mission completion.

Suggested Citation

  • Guo, Xing & Feng, Qiang & Wu, Zeyu & Liu, Meng & Ren, Yi & Yang, Chao & Wang, Zili, 2025. "Multi-agent-based failure modeling for uncrewed swarm systems considering cross-layer diffusion characteristics," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000341
    DOI: 10.1016/j.ress.2025.110831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongxu & Zhong, Yuanfu & Zhuang, Xuebin, 2024. "A soft resource optimization method based on autonomous coordination of unmanned swarms system driven by resilience," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Zhenfang Ma & Kaizhou Gao & Hui Yu & Naiqi Wu, 2024. "Solving Heterogeneous USV Scheduling Problems by Problem-Specific Knowledge Based Meta-Heuristics with Q-Learning," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
    3. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Feng, Qiang & Liu, Meng & Dui, Hongyan & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2022. "Importance measure-based phased mission reliability and UAV number optimization for swarm," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Wang, Qinghan & Wang, Yanbo & Chen, Zhe & Soares, João, 2024. "Multi-agent system consistency-based cooperative scheduling strategy of regional integrated energy system," Energy, Elsevier, vol. 295(C).
    6. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "An agent-based clustering framework for reliable satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2024. "A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Kong, Linghao & Wang, Lizhi & Cao, Zhongzheng & Wang, Xiaohong, 2024. "Resilience evaluation of UAV swarm considering resource supplementation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "A reliable framework for satellite networks achieving energy requirements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Bai, Guanghan & Li, Yanjun & Fang, Yining & Zhang, Yun-An & Tao, Junyong, 2020. "Network approach for resilience evaluation of a UAV swarm by considering communication limits," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    15. Zhang, Yanping & Cai, Baoping & Zhao, Yixin & Gao, Chuntan & Liu, Yiliu & Gao, Lei & Liu, Guijie, 2024. "Joint multi-objective optimization method for emergency maintenance and condition-based maintenance: Subsea control system as a case study," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    16. Shobole, Abdulfetah Abdela & Wadi, Mohammed, 2021. "Multiagent systems application for the smart grid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Tianzhen & Zong, Yan & Lu, Ningyun & Jiang, Bin, 2025. "Toward the resilience of UAV swarms with percolation theory under attacks," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    2. Yang, Yuheng & Guo, Xing & Hai, Xingshuo & Feng, Qiang & Sun, Bo & Wang, Zili, 2025. "Modeling and vulnerability analysis of UAV swarm based on two-layer multi-edge complex network," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    3. Li, Hongxu & Zhong, Yuanfu & Zhuang, Xuebin, 2024. "A soft resource optimization method based on autonomous coordination of unmanned swarms system driven by resilience," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Elena Zaitseva & Vitaly Levashenko & Ravil Mukhamediev & Nicolae Brinzei & Andriy Kovalenko & Adilkhan Symagulov, 2023. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    6. Zhang, Chi & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhu, Wenjin, 2024. "A dynamic resilience evaluation method for cross-domain swarms in confrontation," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Li, Hongxu & Sun, Qin & Zhong, Yuanfu & Huang, Zhiwen & Zhang, Yingchao, 2023. "A soft resource optimization method for improving the resilience of UAV swarms under continuous attack," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Wu, Chengxing & Deng, Hongzhong & Wu, Hongqian & Tu, Chengyi, 2025. "Enhancing resilience of unmanned autonomous swarms through game theory-based cooperative reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    10. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2024. "A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Sun, Qin & Li, Hongxu & Zhong, Yuanfu & Ren, Kezhou & Zhang, Yingchao, 2024. "Deep reinforcement learning-based resilience enhancement strategy of unmanned weapon system-of-systems under inevitable interferences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Niu, Yi-Feng & Xiang, Hai-Yan & Xu, Xiu-Zhen, 2024. "Expected performance evaluation and optimization of a multi-distribution multi-state logistics network based on network reliability," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    13. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Zhang, Yanping & Cai, Baoping & Ahmed, Salim & Wang, Chengyushu & Li, Qingping & Gao, Lei, 2025. "A resilience-driven emergency maintenance operation scheme optimization method based on risk," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    17. Fu, Xiuwen & Zheng, Dingyi & Liu, Xiangwei & Xing, Liudong & Peng, Rui, 2025. "Systematic review and future perspectives on cascading failures in Internet of Things: Modeling and optimization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    18. Geng, Sunyue & Liu, Sifeng, 2025. "An agent-based framework for resilience analysis of service networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    19. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "An agent-based algorithm for dynamic routing in service networks," European Journal of Operational Research, Elsevier, vol. 303(2), pages 719-734.
    20. Zhang, Shuai & Bai, Guanghan & Tao, Junyong & Wang, Yang & Xu, Bei, 2025. "An algorithm to search for multi-state minimal cuts in multi-state flow networks containing state heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 256(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.