IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001541.html
   My bibliography  Save this article

Enhancing resilience of unmanned autonomous swarms through game theory-based cooperative reconfiguration

Author

Listed:
  • Wu, Chengxing
  • Deng, Hongzhong
  • Wu, Hongqian
  • Tu, Chengyi

Abstract

The resilience of unmanned autonomous swarms (UAS) is critical for their ability to adjust behaviors and maintain essential functions when errors and failures occur. While significant advancements have been made in enhancing UAS resilience, the potential to utilize their inherent self-organizing and self-restructuring capabilities for further improvement remains largely underexplored. In this study, we present a game theory-based reconfiguration framework for UAS, enabling dynamic adjustments to the swarm’s network structure through cooperative payoffs. Building on this framework, we propose a UAS resilience metric to quantify the swarm’s task performance under continuous disturbances, validated through a case study. Finally, our analysis of the optimal configurations for enhancing UAS resilience—considering payoff matrices, swarm composition, communication range, and network structure—provides actionable insights for UAS design. We find that an optimal agent configuration ratio exists that maximizes UAS resilience, with specific constraints established for this ratio. Additionally, while increasing the communication range improves resilience, the benefits diminish beyond a certain threshold. We also find that network topology significantly impacts UAS resilience, particularly in structures with short global paths, which exhibit greater resilience.

Suggested Citation

  • Wu, Chengxing & Deng, Hongzhong & Wu, Hongqian & Tu, Chengyi, 2025. "Enhancing resilience of unmanned autonomous swarms through game theory-based cooperative reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001541
    DOI: 10.1016/j.ress.2025.110951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.