IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005203.html
   My bibliography  Save this article

A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity

Author

Listed:
  • Liu, Tao
  • Bai, Guanghan
  • Tao, Junyong
  • Zhang, Yun-An
  • Fang, Yining

Abstract

Unmanned aerial vehicle (UAV) swarms can perform tasks in a self-organized and self-adaptive manner, and are thus appropriate for resilience research. An efficient and resilient information exchange (IE) network among drones is essential for a UAV swarm to accomplish its mission. In this study, we incorporated conditional probability into a multistate network to model the IE of a UAV swarm. Subsequently, we modeled two resilient behaviors based on the actions of the drones: formation transformation and redeployment. For the former, a semi-Markov-based model was adopted to represent the changes in the state probability distribution of the IE link during this resilient behavior. A resilience-based swarm IE topology reconstruction optimal approach for UAV redeployment strategy was presented. Finally, an application case of a UAV swarm was evaluated, for which real experiments were conducted to obtain the state distributions of the IE capacity among UAVs at different distances. The simulation results show that the proposed model and method can help gain understanding of the resilience process of a UAV swarm and can be used to select appropriate recovery strategies, further supporting mission planning and improving the resilience of UAV swarms.

Suggested Citation

  • Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2024. "A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005203
    DOI: 10.1016/j.ress.2023.109606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Guanghan & Li, Yanjun & Fang, Yining & Zhang, Yun-An & Tao, Junyong, 2020. "Network approach for resilience evaluation of a UAV swarm by considering communication limits," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Yang, Shulan & Hou, Zhiwei & Chen, Hongbo, 2023. "Evaluation of vulnerability of MAV/UAV collaborative combat network based on complex network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Feng, Qiang & Liu, Meng & Dui, Hongyan & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2022. "Importance measure-based phased mission reliability and UAV number optimization for swarm," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    7. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Li, Hongxu & Sun, Qin & Zhong, Yuanfu & Huang, Zhiwen & Zhang, Yingchao, 2023. "A soft resource optimization method for improving the resilience of UAV swarms under continuous attack," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    10. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2021. "An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    13. Zhu, Xiaoning & Yan, Rui & Peng, Rui & Zhang, Zhongxin, 2020. "Optimal routing, loading and aborting of UAVs executing both visiting tasks and transportation tasks," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Dui, Hongyan & Zhang, Chi & Bai, Guanghan & Chen, Liwei, 2021. "Mission reliability modeling of UAV swarm and its structure optimization based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Pang, Bizhao & Hu, Xinting & Dai, Wei & Low, Kin Huat, 2022. "UAV path optimization with an integrated cost assessment model considering third-party risks in metropolitan environments," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Li, Hongxu & Sun, Qin & Zhong, Yuanfu & Huang, Zhiwen & Zhang, Yingchao, 2023. "A soft resource optimization method for improving the resilience of UAV swarms under continuous attack," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Kong, Linghao & Wang, Lizhi & Cao, Zhongzheng & Wang, Xiaohong, 2024. "Resilience evaluation of UAV swarm considering resource supplementation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Elena Zaitseva & Vitaly Levashenko & Ravil Mukhamediev & Nicolae Brinzei & Andriy Kovalenko & Adilkhan Symagulov, 2023. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    7. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Yan, Rui & Zhu, Xiaoping & Zhu, Xiaoning & Peng, Rui, 2022. "Optimal routes and aborting strategies of trucks and drones under random attacks," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Cui, Hongjun & Wang, Fei & Ma, Xinwei & Zhu, Minqing, 2022. "A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Feng, Qiang & Liu, Meng & Dui, Hongyan & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2022. "Importance measure-based phased mission reliability and UAV number optimization for swarm," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Chen, Zhiwei & Hong, Dongpao & Cui, Weiwei & Xue, Weikang & Wang, Yao & Zhong, Jilong, 2023. "Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.