IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v166y2017icp109-123.html
   My bibliography  Save this article

Reliability analysis of multi-state systems subject to failure mechanism dependence based on a combination method

Author

Listed:
  • Li, Ying Yi
  • Chen, Ying
  • Yuan, Zeng Hui
  • Tang, Ning
  • Kang, Rui

Abstract

A multi-state system is a kind of system in which both the system and its components may display multiple performance levels, and it can be utilized to model more complicated and practical systems. As one kind of multi-state object, the performance degradation of a system and its components can be analyzed in terms of failure mechanism dependence. Some coupling relationships of these failure mechanisms exhibit multi-state properties as well. This paper merged the primary failure mechanism correlations proposed in our previous research and provided a combinational method that proposes a modified binary decision diagram (BDD) and a multi-state multi-valued decision diagram (MMDD) models for the state-probability evaluation and reliability analysis of the multi-state system. The method consists of four steps: generation of BDD models for components, calculation of state-probability for components, generation of MMDD models for the system and calculation of reliability for the system. As a study case, the reliability and state-probability of a multi-state sensor system are evaluated using this combinational method. Finally, a comparison between the binary-state and the multi-state are given as well.

Suggested Citation

  • Li, Ying Yi & Chen, Ying & Yuan, Zeng Hui & Tang, Ning & Kang, Rui, 2017. "Reliability analysis of multi-state systems subject to failure mechanism dependence based on a combination method," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 109-123.
  • Handle: RePEc:eee:reensy:v:166:y:2017:i:c:p:109-123
    DOI: 10.1016/j.ress.2016.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisnianski, Anatoly, 2007. "Extended block diagram method for a multi-state system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1601-1607.
    2. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    3. Levitin, Gregory & Xing, Liudong, 2010. "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 655-661.
    4. Keedy, Elias & Feng, Qianmei, 2012. "A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 94-101.
    5. Bocchetti, D. & Giorgio, M. & Guida, M. & Pulcini, G., 2009. "A competing risk model for the reliability of cylinder liners in marine Diesel engines," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1299-1307.
    6. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2011. "Multi-state systems with selective propagated failures and imperfect individual and group protections," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1657-1666.
    7. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    8. Chen, Ying & Yang, Liu & Ye, Cui & Kang, Rui, 2015. "Failure mechanism dependence and reliability evaluation of non-repairable system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 273-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Ma, Ye & Chi, Yuanying & Wu, Di & Peng, Rui & Wu, Shaomin, 2021. "Reliability of integrated electricity and gas supply system with performance substitution and sharing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Blancke, Olivier & Tahan, Antoine & Komljenovic, Dragan & Amyot, Normand & Lévesque, Mélanie & Hudon, Claude, 2018. "A holistic multi-failure mode prognosis approach for complex equipment," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 136-151.
    4. Zhang, Qian & Pan, Ning & Meloni, Marco & Lu, Dong & Cai, Jianguo & Feng, Jian, 2021. "Reliability analysis of radially retractable roofs with revolute joint clearances," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2020. "A novel method for maintenance record clustering and its application to a case study of maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    2. Chen, Ying & Yang, Liu & Ye, Cui & Kang, Rui, 2015. "Failure mechanism dependence and reliability evaluation of non-repairable system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 273-283.
    3. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    4. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    5. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Levitin, Gregory & Xing, Liudong & Huang, Hong Zhong, 2019. "Dynamic availability and performance deficiency of common bus systems with imperfectly repairable components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 58-66.
    7. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    8. Sheu, Shey-Huei & Chang, Chin-Chih & Chen, Yen-Luan & George Zhang, Zhe, 2015. "Optimal preventive maintenance and repair policies for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 78-87.
    9. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    10. Yan, Xiangbin & Qiu, Hui & Peng, Rui & Wu, Shaomin, 2020. "Optimal configuration of a power grid system with a dynamic performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Zhao, Guilin & Xing, Liudong, 2023. "Reliability analysis of body sensor networks with correlated isolation groups," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    14. Wang, Yujie & Xing, Liudong & Wang, Honggang & Levitin, Gregory, 2015. "Combinatorial analysis of body sensor networks subject to probabilistic competing failures," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 388-398.
    15. George-Williams, Hindolo & Patelli, Edoardo, 2016. "A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 351-367.
    16. Liang, Zhenglin & Parlikad, Ajith Kumar & Srinivasan, Rengarajan & Rasmekomen, Nipat, 2017. "On fault propagation in deterioration of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 72-80.
    17. Wenjie Dong & Sifeng Liu & Zhigeng Fang & Yingsai Cao & Ye Ding, 2019. "A model based on hidden graphic evaluation and review technique network to evaluate reliability and lifetime of multi-state systems," Journal of Risk and Reliability, , vol. 233(3), pages 369-378, June.
    18. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    19. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
    20. Peng Su & Guanjun Wang, 2022. "Reliability analysis of network systems subject to probabilistic propagation failures and failure isolation effects," Journal of Risk and Reliability, , vol. 236(2), pages 290-306, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:166:y:2017:i:c:p:109-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.