IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v149y2016icp88-95.html
   My bibliography  Save this article

Optimal loading and protection of multi-state systems considering performance sharing mechanism

Author

Listed:
  • Xiao, Hui
  • Shi, Daimin
  • Ding, Yi
  • Peng, Rui

Abstract

Engineering systems are designed to carry the load. The performance of the system largely depends on how much load it carries. On the other hand, the failure rate of the system is strongly affected by its load. Besides internal failures, such as fatigue and aging process, systems may also fail due to external impacts such as nature disasters and terrorism. In this paper, we integrate the effect of loading and protection of external impacts on multi-state systems with performance sharing mechanism. The objective of this research is to determine how to balance the load and protection on system elements. An availability evaluation algorithm of the proposed system is suggested and the corresponding optimization problem is solved utilizing genetic algorithms.

Suggested Citation

  • Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
  • Handle: RePEc:eee:reensy:v:149:y:2016:i:c:p:88-95
    DOI: 10.1016/j.ress.2015.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015003531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    2. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
    3. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    4. Ding, Yi & Wang, Peng & Lisnianski, Anatoly, 2006. "Optimal reserve management for restructured power generating systems," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 792-799.
    5. Levitin, Gregory & Amari, Suprasad V., 2009. "Optimal load distribution in series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 254-260.
    6. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    7. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    8. Kjell Hausken, 2005. "Production and Conflict Models Versus Rent-Seeking Models," Public Choice, Springer, vol. 123(1), pages 59-93, April.
    9. An, Zong-Wen & Huang, Hong-Zhong & Liu, Yu, 2008. "A discrete stress–strength interference model based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1485-1490.
    10. Nourelfath, Mustapha & Yalaoui, Farouk, 2012. "Integrated load distribution and production planning in series-parallel multi-state systems with failure rate depending on load," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 138-145.
    11. Levitin, Gregory & Hausken, Kjell, 2011. "Is it wise to protect false targets?," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1647-1656.
    12. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    13. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    14. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    15. Lisnianski, Anatoly & Ding, Yi, 2009. "Redundancy analysis for repairable multi-state system by using combined stochastic processes methods and universal generating function technique," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1788-1795.
    16. Gregory Levitin, 2011. "Reliability of multi-state systems with common bus performance sharing," IISE Transactions, Taylor & Francis Journals, vol. 43(7), pages 518-524.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
    18. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    19. Zhou, Yifan & Zhang, Zhisheng & Lin, Tian Ran & Ma, Lin, 2013. "Maintenance optimisation of a multi-state series–parallel system considering economic dependence and state-dependent inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 248-259.
    20. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    21. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, June.
    22. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2013. "Individual vs. overarching protection for minimizing the expected damage caused by an attack," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 117-125.
    23. Faghih-Roohi, Shahrzad & Xie, Min & Ng, Kien Ming & Yam, Richard C.M., 2014. "Dynamic availability assessment and optimal component design of multi-state weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 57-62.
    24. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    25. Rui Peng & Min Xie & Szu Ng & Gregory Levitin, 2012. "Element maintenance and allocation for linear consecutively connected systems," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 964-973.
    26. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal loading of system with random repair time," European Journal of Operational Research, Elsevier, vol. 247(1), pages 137-143.
    27. R Peng & G Levitin & M Xie & S H Ng, 2011. "Optimal defence of single object with imperfect false targets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 134-141, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    2. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    3. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    4. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    5. Levitin, Gregory & Xing, Liudong & Huang, Hong Zhong, 2019. "Dynamic availability and performance deficiency of common bus systems with imperfectly repairable components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 58-66.
    6. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    7. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2016. "Optimal task partition and state-dependent loading in heterogeneous two-element work sharing system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 97-108.
    8. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    9. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    10. Gu, Liudong & Wang, Guanjun & Zhou, Yifan, 2024. "Optimal allocation of multi-state performance sharing systems with multiple common buses," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    11. Yan, Xiangbin & Qiu, Hui & Peng, Rui & Wu, Shaomin, 2020. "Optimal configuration of a power grid system with a dynamic performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2017. "Optimal loading of series parallel systems with arbitrary element time-to-failure and time-to-repair distributions," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 34-44.
    13. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    14. Peng, R. & Zhai, Q.Q. & Levitin, G., 2016. "Defending a single object against an attacker trying to detect a subset of false targets," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 137-147.
    15. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    16. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    18. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    19. Hausken, Kjell, 2010. "Defense and attack of complex and dependent systems," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 29-42.
    20. Hausken, Kjell, 2008. "Strategic defense and attack for reliability systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1740-1750.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:149:y:2016:i:c:p:88-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.