IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v119y2013icp280-289.html
   My bibliography  Save this article

A compound methodology to assess the impact of human and organizational factors impact on the risk level of hazardous industrial plants

Author

Listed:
  • Monferini, A.
  • Konstandinidou, M.
  • Nivolianitou, Z.
  • Weber, S.
  • Kontogiannis, T.
  • Kafka, P.
  • Kay, A.M.
  • Leva, M.C.
  • Demichela, M.

Abstract

This paper presents a compound methodology devised to relate Human and Organizational Factors (HOFs) to operators’ response time in critical operations within hazardous industrial plants. The methodology has been based on a sensitivity analysis of the nine “families†of the Common Performance Conditions (CPCs), as defined in the CREAM technique, in order to verify and rank their influence on the operators’ response time. To prove the methodology, a series of pilot experiments have been designed and performed so that human response is evaluated in a Virtual Environment (VE) reproducing the control room and a specific plant section. This environment enables the analyst controlling the simulation to perform the sensitivity analysis acting through a supervisory station and manipulating the control functions in order to vary each CPC rate around its nominal value. Experiments were run with the variation of one CPC at a time aiming at the detection and containment operation of a gas leakage in a pressure-reduction NG terminal. The whole case study has been run within the framework of the VIRTHUALIS EU project.

Suggested Citation

  • Monferini, A. & Konstandinidou, M. & Nivolianitou, Z. & Weber, S. & Kontogiannis, T. & Kafka, P. & Kay, A.M. & Leva, M.C. & Demichela, M., 2013. "A compound methodology to assess the impact of human and organizational factors impact on the risk level of hazardous industrial plants," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 280-289.
  • Handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:280-289
    DOI: 10.1016/j.ress.2013.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013001075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M Konstandinidou & Z Nivolianitou & C Kiranoudis & N Markatos, 2008. "Evaluation of significant transitions in the influencing factors of human reliability," Journal of Risk and Reliability, , vol. 222(1), pages 39-45, March.
    2. Griffith, Candice D. & Mahadevan, Sankaran, 2011. "Inclusion of fatigue effects in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1437-1447.
    3. Reiman, Teemu & Rollenhagen, Carl, 2011. "Human and organizational biases affecting the management of safety," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1263-1274.
    4. Park, Jinkyun & Jung, Wondea & Jung, Kwangtae, 2008. "The effect of two complexity factors on the performance of emergency tasks—An experimental verification," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 350-362.
    5. Skogdalen, Jon Espen & Vinnem, Jan Erik, 2011. "Quantitative risk analysis offshore—Human and organizational factors," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 468-479.
    6. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    7. Konstandinidou, Myrto & Nivolianitou, Zoe & Kiranoudis, Chris & Markatos, Nikolaos, 2006. "A fuzzy modeling application of CREAM methodology for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 706-716.
    8. Zhang, Li & He, Xuhong & Dai, Li-Cao & Huang, Xiang-Rui, 2007. "The simulator experimental study on the operator reliability of Qinshan nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    2. Abrahamsen, Eirik Bjorheim & Moharamzadeh, Alireza & Abrahamsen, Håkon Bjorheim & Asche, Frank & Heide, Bjørnar & Milazzo, Maria Francesca, 2018. "Are too many safety measures crowding each other out?," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 108-113.
    3. He, Ye & Kuai, Nian-Sheng & Deng, Li-Min & He, Xiong-Yuan, 2021. "A method for assessing Human Error Probability through physiological and psychological factors tests based on CREAM and its applications," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Naderpour, Mohsen & Lu, Jie & Zhang, Guangquan, 2016. "A safety-critical decision support system evaluation using situation awareness and workload measures," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 147-159.
    5. Dobrota, Marina & Martic, Milan & Bulajic, Milica & Jeremic, Veljko, 2015. "Two-phased composite I-distance indicator approach for evaluation of countries’ information development," Telecommunications Policy, Elsevier, vol. 39(5), pages 406-420.
    6. Musharraf, Mashrura & Smith, Jennifer & Khan, Faisal & Veitch, Brian & MacKinnon, Scott, 2016. "Assessing offshore emergency evacuation behavior in a virtual environment using a Bayesian Network approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 28-37.
    7. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    8. Musharraf, Mashrura & Bradbury-Squires, David & Khan, Faisal & Veitch, Brian & MacKinnon, Scott & Imtiaz, Syed, 2014. "A virtual experimental technique for data collection for a Bayesian network approach to human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    4. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    5. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    6. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    7. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Dhruv Pandya & Luca Podofillini & Frank Emert & Antony J Lomax & Vinh N Dang, 2018. "Developing the foundations of a cognition-based human reliability analysis model via mapping task types and performance-influencing factors: Application to radiotherapy," Journal of Risk and Reliability, , vol. 232(1), pages 3-37, February.
    9. He, Ye & Kuai, Nian-Sheng & Deng, Li-Min & He, Xiong-Yuan, 2021. "A method for assessing Human Error Probability through physiological and psychological factors tests based on CREAM and its applications," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Rasmussen, Martin & Laumann, Karin, 2020. "The evaluation of fatigue as a performance shaping factor in the Petro-HRA method," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    11. Sook Shuen Yeong & Abdul Wahab Shah Rollah, 2016. "The Mediating Effect of Safety Culture on Safety Communication and Human Factor Accident at the Workplace," Asian Social Science, Canadian Center of Science and Education, vol. 12(12), pages 127-127, December.
    12. Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    14. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    15. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    16. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    17. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    18. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    19. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    20. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:280-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.