IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v232y2018i1p3-37.html
   My bibliography  Save this article

Developing the foundations of a cognition-based human reliability analysis model via mapping task types and performance-influencing factors: Application to radiotherapy

Author

Listed:
  • Dhruv Pandya
  • Luca Podofillini
  • Frank Emert
  • Antony J Lomax
  • Vinh N Dang

Abstract

Most human reliability analysis methods have been developed for nuclear power plant applications; this challenges the application of the available techniques to other domains. Indeed, for application to a specific domain, a human reliability analysis method should address the relevant tasks and performance conditions. The aim of this article is to propose a methodology to develop a generic task type–performance-influencing factor structure, specific for application to a domain of interest and directly linked to an underlying cognitive framework of literature. The structure provides the foundation of a human reliability analysis method built on the generic task type concept; it identifies the sector-specific performance-influencing factor effects on the failure probability that the method needs to represent and quantify for each generic task type. The methodology is intended to support a systematic and traceable process to develop the generic task type–performance-influencing factor structure, to ease the review of the process and of its results and, in case, identify and implement changes to the structure. The proposed methodology is applied to the radiotherapy domain allowing the development of sector-specific taxonomies of representative critical tasks, their failure modes, underlying cognitive failure mechanism, and influencing performance-influencing factors. This is part of a broader activity carried out by the Risk and Human Reliability Group at the Paul Scherrer Institute of Switzerland to develop a human reliability analysis method, specific for the radiotherapy domain. The activity is conducted in close cooperation with Paul Scherrer Institute’s Center for Proton Therapy, where a first application of the method is foreseen.

Suggested Citation

  • Dhruv Pandya & Luca Podofillini & Frank Emert & Antony J Lomax & Vinh N Dang, 2018. "Developing the foundations of a cognition-based human reliability analysis model via mapping task types and performance-influencing factors: Application to radiotherapy," Journal of Risk and Reliability, , vol. 232(1), pages 3-37, February.
  • Handle: RePEc:sae:risrel:v:232:y:2018:i:1:p:3-37
    DOI: 10.1177/1748006X17731903
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X17731903
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X17731903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Skogdalen, Jon Espen & Vinnem, Jan Erik, 2011. "Quantitative risk analysis offshore—Human and organizational factors," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 468-479.
    2. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    3. James Chang, Y. & Bley, Dennis & Criscione, Lawrence & Kirwan, Barry & Mosleh, Ali & Madary, Todd & Nowell, Rodney & Richards, Robert & Roth, Emilie M. & Sieben, Scott & Zoulis, Antonios, 2014. "The SACADA database for human reliability and human performance," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 117-133.
    4. Ekanem, Nsimah J. & Mosleh, Ali & Shen, Song-Hua, 2016. "Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 301-315.
    5. Edidiong Ekaette & Robert C. Lee & David L. Cooke & Sandra Iftody & Peter Craighead, 2007. "Probabilistic Fault Tree Analysis of a Radiation Treatment System," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1395-1410, December.
    6. Groth, Katrina M. & Mosleh, Ali, 2012. "A data-informed PIF hierarchy for model-based Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 154-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Chen, Shuai & Zhang, Li & Qing, Tao, 2021. "A human reliability analysis methodology based on an extended Phoenix method for severe accidents in nuclear power plants: Qualitative analysis framework," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    5. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    9. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Shirley, Rachel Benish & Smidts, Carol & Zhao, Yunfei, 2020. "Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simul," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    11. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    12. Liu, Peng & Lyu, Xi & Qiu, Yongping & He, Jiandong & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2017. "Identifying key performance shaping factors in digital main control rooms of nuclear power plants: A risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 264-275.
    13. Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    14. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
    15. Pandya, Dhruv & Podofillini, Luca & Emert, Frank & Lomax, Antony J. & Dang, Vinh N. & Sansavini, Giovanni, 2020. "Quantification of a human reliability analysis method for radiotherapy applications based on expert judgment aggregation," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    16. Lai, Hsueh-Yi & Chen, Chun-Hsien & Zheng, Pai & Khoo, Li Pheng, 2020. "Investigating the evolving context of an unstable approach in aviation from mental model disconnects with an agent-based model," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 2 — Application," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Lai, Hsueh-Yi & Chen, Chun-Hsien & Khoo, Li-Pheng & Zheng, Pai, 2019. "Unstable approach in aviation: Mental model disconnects between pilots and air traffic controllers and interaction conflicts," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 383-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:232:y:2018:i:1:p:3-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.