IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v83y2014icp176-189.html
   My bibliography  Save this article

Integrated urban water management modelling under climate change scenarios

Author

Listed:
  • Pingale, Santosh M.
  • Jat, Mahesh K.
  • Khare, Deepak

Abstract

The concept of integrated water management is uncommon in urban areas, unless there is a shortage of supply and severe conflicts among the users competing for limited water resources. Further, problem of water management in urban areas will aggravate due to uncertain climatic events. Therefore, an Integrated Urban Water Management Model considering Climate Change (IUWMCC) has been presented which is suitable for optimum allocation of water from multiple sources to satisfy the demands of different users under different climate change scenarios. Effect of climate change has been incorporated in non-linear mathematical model of resource allocation in term of climate change factors. These factors have been developed using runoff responses corresponding to base and future scenario of climate. Future scenarios have been simulated using stochastic weather generator (LARS-WG) for different IPCC climate change scenarios i.e. A1B, A2 and B1. Further, application of model has been demonstrated for a realistic water supply system of Ajmer urban fringe (India). Developed model is capable in developing adaptation strategies for optimum water resources planning and utilization in urban areas under different climate change scenarios.

Suggested Citation

  • Pingale, Santosh M. & Jat, Mahesh K. & Khare, Deepak, 2014. "Integrated urban water management modelling under climate change scenarios," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 176-189.
  • Handle: RePEc:eee:recore:v:83:y:2014:i:c:p:176-189
    DOI: 10.1016/j.resconrec.2013.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913002139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Wang & G. Huang, 2012. "Identifying Optimal Water Resources Allocation Strategies through an Interactive Multi-Stage Stochastic Fuzzy Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2015-2038, May.
    2. Zarghami, Mahdi & Hajykazemian, Hassan, 2013. "Urban water resources planning by using a modified particle swarm optimization algorithm," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 1-8.
    3. L. Shao & X. Qin & Y. Xu, 2011. "A Conditional Value-at-Risk Based Inexact Water Allocation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2125-2145, July.
    4. Zarghami, Mahdi & Akbariyeh, Simin, 2012. "System dynamics modeling for complex urban water systems: Application to the city of Tabriz, Iran," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 99-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    2. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    3. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    4. Esther Barrios-Crespo & Saúl Torres-Ortega & Pedro Díaz-Simal, 2021. "Developing a Dynamic Model for Assessing Green Infrastructure Investments in Urban Areas," IJERPH, MDPI, vol. 18(20), pages 1-24, October.
    5. Liu, J. & Li, Y.P. & Huang, G.H. & Zeng, X.T., 2014. "A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 50-66.
    6. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    7. Zhao, Siwei & Liu, Weidong & Zhu, Mengyuan & Ma, Yanfang & Li, Zongmin, 2021. "A priority-based multi-objective framework for water resources diversion and allocation in the middle route of the South-to-North Water Diversion Project," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    8. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    9. Xiaona Li & Xiaosheng Wang & Haiying Guo & Weimin Ma, 2020. "Multi-Water Resources Optimal Allocation Based on Multi-Objective Uncertain Chance-Constrained Programming Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4881-4899, December.
    10. J. Alarcón & L. Juana, 2016. "The Water Markets as Effective Tools of Managing Water Shortages in an Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2611-2625, June.
    11. Galioto, F., 2018. "The value of information for the management of water resources in agriculture: comparing the economic impact of alternative sources of information to schedule irrigation," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277384, International Association of Agricultural Economists.
    12. Bin Xu & Ping-an Zhong & Yenan Wu & Fangming Fu & Yuting Chen & Yunfa Zhao, 2017. "A Multiobjective Stochastic Programming Model for Hydropower Hedging Operations under Inexact Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4649-4667, November.
    13. Jing Tian & Shenglian Guo & Dedi Liu & Zhengke Pan & Xingjun Hong, 2019. "A Fair Approach for Multi-Objective Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3633-3653, August.
    14. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    15. Galioto, Francesco & Chatzinikolaou, Parthena & Raggi, Meri & Viaggi, Davide, 2020. "The value of information for the management of water resources in agriculture: Assessing the economic viability of new methods to schedule irrigation," Agricultural Water Management, Elsevier, vol. 227(C).
    16. Tu, Yan & Zhou, Xiaoyang & Gang, Jun & Liechty, Merrill & Xu, Jiuping & Lev, Benjamin, 2015. "Administrative and market-based allocation mechanism for regional water resources planning," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 156-173.
    17. Wang, S. & Huang, G.H., 2016. "Risk-based factorial probabilistic inference for optimization of flood control systems with correlated uncertainties," European Journal of Operational Research, Elsevier, vol. 249(1), pages 258-269.
    18. Javier Alarcón & Alberto Garrido & Luis Juana, 2014. "Managing Irrigation Water Shortage: a Comparison Between Five Allocation Rules Based on Crop Benefit Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2315-2329, June.
    19. Lina Zhang & Xiaoling Zhang & Fengping Wu & Qinghua Pang, 2020. "Basin Initial Water Rights Allocation under Multiple Uncertainties: a Trade-off Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 955-988, February.
    20. Maryam Soltani & Reza Kerachian & Mohammad Reza Nikoo & Hamideh Noory, 2016. "A Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 427-443, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:83:y:2014:i:c:p:176-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.